AR Manual
The CASAS Project

 Set ImplName * MERGEFORMAT
[image: image1.png]
AR Manual

Version 3.0
Table of Contents

ivTable of Contents

Preface
vii
1.
Introduction
1
1.1
Overview
1
1.2
Reference Documents
1
2.
Downloading and Installing
2
2.1
Download
2
2.2
Files
2
2.3
Install
2
3.
Data Format
3
3.1
Data
3
3.1.1
Date
3
3.1.2
Time
3
3.1.3
HighLevelSensorID
3
3.1.4
LowLevelSensorID
3
3.1.5
SensorValue
3
3.1.6
Label
4
3.1.7
Samples
4
3.2
Configuration Input
4
3.2.1
data
4
3.2.2
sensor
4
3.2.3
Weight
4
3.2.4
model
5
3.2.5
mode
5
3.2.6
mi
5
3.2.7
fsenact
5
3.2.8
factwind
5
3.2.9
activity
5
Executing
6
3.3
Command
6
3.4
Other Tools
6
3.4.1
PyViz
6
3.4.2
SDG
6
4.
Notes/Issues
7
4.1
Unix
7
4.2
Decision Tree Algorithm
7
4.3
AR Algorithm
7
A.
Appendix - Terminology
8

Preface

Conventions

The following documentation conventions are followed within this document.

Bold underlined text signifies notes or comments to the reader.

Italicized text signifies file names, directories or programs.

Bold italicized text signifies a reference to another document.

1. Introduction

The following document provides a manual on how to use the AR program.

1.1 Overview

The AR program learns models of activities from sensor data and can use these models to automatically label a sequence of sensor data with the corresponding activity. While the details of how AR works internally will not be discussed here (you can refer to other documents on the CASAS web-site for more information), this document will provide you with the specifics on how to install and run the application. The AR program, sample data, and documentation are made available as part of the CASAS project located at Washington State University.
This document contains the following sections:

· Chapter Two: instructions on how to download and install AR
· Chapter Three: layout of the input data file and parameter file
· Chapter Four: instructions on running AR
· Chapter Five: various notes and issues regarding the AR program
· Appendix A: terminology

1.2 Reference Documents

· CASAS Home Page: http://ailab.wsu.edu/casas
2. Downloading and Installing

In order to build and run the AR program, you must first download the appropriate files.

2.1 Download

The AR system, including documentation, papers, and research, can be found on the AR home page (http://ailab.wsu.edu/casas/ar). At this site, click on the version of AR you wish to download and save the file on your machine.
2.2 Files

Once you have downloaded the program and unzipped the files, the following directory/file structure is created:

./bin/

Directory of executables (initially empty)

/COPYRIGHT

File containing the AR copyright notice

./docs/

Directory containing this manual

./sample/

Directory containing some sample sensor event input files

./README

File containing brief directions on how to build AR
./src/

Directory containing the source code and make files
2.3 Install

After downloading and unzipping the files, you can now install the AR application. Installation consists of actually building the application so that it is now native to your Unix/Linux system.

AR uses the standard make facility to build its application. In order to build the application, you should perform the following steps:

1. Change directory to src.
2. At the command prompt enter: make. This will compile the AR program.

3. At the command prompt enter: make install. This will copy the executables to the ar/bin directory

4. At the command prompt enter: make clean. This will clean up the src directory (removing object files).

3. Data Format

The following section describes the format of the dataset that must be supplied in order to run the AR program.

3.1 Data
The AR application reads in a textual representation of a sequence of sensor events. Each line in this file contains a single sensor event in the format:

Date Time HighLevelSensorID LowLevelSensorID SensorValue <label>

The fields in this entry are separated by spaces. While AR will process any data that is syntactically correct, some of the models expect that the sensor events are presented in increasing time order in the input file.

3.1.1 Date
The date refers to the specific day on which the sensor event occurred. The current version of AR expects that the date will be presented in the format:

yyyy-mm-dd

3.1.2 Time

The time refers to the time of day at which the sensor event occurred. The current version of AR expects that the time will be presented in the format:

hh<:mm:ss.x*>

where the minutes, seconds, and milliseconds are optional and an arbitrary precision is allowed. In the current version of AR only the hour values are used to generate the models and recognize activities.

3.1.3 HighLevelSensorID

Each sensor that is used in the dataset has a specific ID which is represented by a string. The high level ID is an abstract representation of the sensor, often a room name combined with sensor type.
3.1.4 LowLevelSensorID

The low level sensor ID is a second sensor type that describes the sensor generating the event. The low level ID is a more specific functional description of the sensor, perhaps a specific object or area in a room of the building.
3.1.5 SensorValue

The sensor which generated the current event has a value for this event. Currently the sensor values are represented and processed as string values.

3.1.6 Label

Each sensor event is labeled with the corresponding activity. The interpretation is that this sensor event corresponds to an activity with the label “label”. If this activity is currently active, then this is interpreted to mean that the current sensor event belongs only to this specific activity and not to any other activities that are currently active. If the activity is not currently active, then this individual event will constitute a separate occurrence of the activity. There cannot be a sensor event without an activity label. If there is no specific activity associated with the sensor event, then “Other_Activity” can be used to label this event.
3.1.7 Samples

The sampledata file in the ./sample directory of the installation illustrates a sample data file that can be input to the AR application. Various sample input data files can be found online at http://ailab.wsu.edu/casas/datasets.html.
3.2 Configuration Input

This is the file that is supplied to the AR application. It specifies values to the different parameters required by the AR application. The header file customizes operation of AR for the particular data file that is being used.

ParameterName ParameterValue(s)
The configuration or (.config) file is essential to run the program both in train and test modes. In train mode, the AR program creates model.config that stores various information associated with the training mode. In addition to the parameters specified in the input .config file, the model.config also contains information related to the training setting. The following sections detail the parameters that can be defined in the header file.
3.2.1 data
This parameter specifies the names of the files that contain the data. The AR application can read multiple data files. The parameter value for the “data” parameter should contain the names of the files separated by space. As an example
data sampledata1 sampledata2

3.2.2 sensor
This parameter refers to the string labels for the high-level and low-level sensor identifiers. Examples of these identifiers are bedroomdoor, loungechair, kitchendoor etc. These have to specified in the .config file as follows

sensor bedroomdoor loungechair kitchendoor

3.2.3 Weight
This parameter corresponds to the weighting mechanism that is used for computing the feature vector. The parameter can take the following different values

0 - no weighting of the sensor events (this is the default value if not specified in the file)
1 - time based weighting of the sensor events

2 - mutual information based weighting of sensor events

3 - combination of time based weighting and mutual information based weighting of sensor events

For more details about the different weighting schemes refer to CASAS publications. An example usage of this parameter with time-based weighting is

weight 2
3.2.4 model

This parameter specifies the name of the directory in which the activity model files have to be stored. This directory is created in the current directory and the output files are stored in this directory. An example usage of this parameter is

model modeldirectory

3.2.5 mode
This parameter specifies the mode in which the AR application is to be used. Currently it supports two modes: train and test. The default value of mode is 0 if the value is not specified in the config file. In the train mode (value 1), the AR application reads trains the decision tree models based on the input data. In the test mode, the AR application loads the model and generates labels for the input data. While creating the model.config in the training mode, the AR program automatically sets the value to this parameter as 1, corresponding to the test mode. An example of this parameter is

mode 1
3.2.6 mi

This parameter is written by the AR program during training to the model.config file. It corresponds to the mutual information between the sensors.

3.2.7 fsenact

This is again a parameter that is written by the AR program during training to the model.config file. It represents the most likely activity associated with each sensor event
3.2.8 factwind

This is a parameter that is written by the AR program during training to the model.config file. It represents the strongest window size to use for each activity.

3.2.9 activity

This is a parameter that is written as output by the AR program during training to the model.config file. It stores the names of the activities as learned during the training mode. It is essential to retain the activity names in this same sequence while testing, as the decision tree models store the activity labels in terms of the activity indices in this sequence.

Executing

The purpose of the AR program is to learn models that describe activities based on sensor data that is collected while the activity is performed. The ability to learn these models is controlled by various user-specified parameters, which control the methods that are used.

3.3 Command

AR uses a command-line interface. In order to run AR, you must be logged on to the Unix machine where the application was downloaded and installed. From the Unix prompt, the command would be as follows:

ar ConfigFile [DataFile]
There are several points which should be noted here:

· ar is the name of the executable. The above example assumes that you are running the application from the same directory where the executable resides (which is probably in ./bin/). If the desire is to run the application from another directory, ar will have to be included in the user’s path.

· ConfigFile is the name (and path) of the configuration input file.

· DataFile is the name(s) of the data files each separated by a space. This is an optional parameter if it is not specified within the config file.
In the train mode the AR program learns the activity models and stores them in the directory specified by the model parameter in the config file. In addition, it also stores a model.config file in the directory that contains the activity models. This file has to be input to the AR program for testing the models stored in the corresponding directory. In the test mode, the AR program outputs the predicted activity label to the standard output for every sensor event in the data file.
3.4 Other Tools

The following sections cover various tools that are available on the CASAS web page.

3.4.1 PyViz

This tool is written in Python and is used to visualize a sequence of sensor events and the distribution of activity occurrences.

3.4.2 SDG

This tool is written in C and creates synthetic sensor data emulating various activity patterns.

Notes/Issues

The following sections represent various notes and issues.

3.5 Unix

AR was designed and developed to run on a Unix-based system. The application was tested on Linux, but should be compatible with any Unix system. AR is written in C, where every effort was made to use only standard ANSI C constructs and functions.

3.6 Decision Tree Algorithm
The AR Program uses the C4.5 version of a decision tree algorithm. The details of this implementation can be found here:
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
3.7 AR Algorithm

For more information about the AR algorithm, please refer to the CASAS papers available at http://ailab.wsu.edu/casas/ar. Projects which use the AR program should reference the appropriate paper.
A. Appendix - Terminology

The following terminology was referenced in this document:

AR –
Activity Recognition program
vii
_MCI Confidential___

Integrating Subdue with Analyst Notebook

iii
February 16, 2010 KEYWORDS * MERGEFORMAT

