	[image: image2.png]
	[AL Manual
	WSU CASAS]

 Set ImplName * MERGEFORMAT
[image: image3.jpg]
AL Manual

Version 2.0
Table of Contents

ivTable of Contents

1.
Introduction
1
1.1
Overview
1
1.2
Reference Documents
1
2.
Downloading and Installing
2
2.1
Download
2
2.2
Files
2
2.3
Install
2
3.
Data Format
3
3.1
Data
3
3.1.1
Date
3
3.1.2
Time
3
3.1.3
HighLevelSensorID
3
3.1.4
LowLevelSensorID
3
3.1.5
SensorValue
3
3.1.6
Label
4
3.1.7
Samples
4
3.2
Configuration Input
4
3.2.1
data
4
3.2.2
sensor
4
3.2.3
output
4
3.2.4
model
5
3.2.5
mode
5
3.2.6
topn
6
3.2.7
predictactivity
6
3.2.8
translate
6
3.2.9
site
6
3.2.10
weight
6
3.2.11
mi
7
3.2.12
fsenact
7
3.2.13
factwind
7
3.2.14
activity
7
4. Executing The Program
8
4.1
Command
8
4.2
Other Tools
9
4.2.1
PyViz
9
4.2.2
SDG
9
5.
Notes/Issues
10
5.1
Unix
10
5.2
Decision Tree Algorithms
10
5.3
AL Algorithm
10
Appendix - Terminology
11

Copyright © 2013. WSU CASAS.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

The Software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors, copyright holders, or contributors be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the Software or the use or other dealings in the software.

Conventions

The following documentation conventions are followed within this document.

Bold underlined text signifies notes or comments to the reader.

Italicized text signifies file names, directories or programs.

Bold italicized text signifies a reference to another document.

1. Introduction

The following document provides a manual on how to use the AL program.

1.1 Overview

AL stands for "Activity Learning". AL contains a number of activity learning components, which include activity modeling and recognition (AR), activity discovery (AD), and activity prediction (AP). The technical details of how AR, AD, and AP work internally are not discussed here (you can refer to documents on the CASAS web site for more information). Here are brief descriptions of the functionality of these three components.

· AR: The AR component learns models of activities from sensor data and can use these models to automatically label a sequence of sensor data with the corresponding activity.
· AD: The AD activity discovery component finds sequential patterns in time-ordered sensor data. Data is labeled with the pattern names and can be recognized by AR and predicted by AP.

· AP: The AP component predicts the upcoming occurrence of recognizable activities.
This document contains the following sections:

· Chapter Two: instructions on how to download and install AL
· Chapter Three: layout of the input data file and parameter file
· Chapter Four: instructions on running AL
· Chapter Five: various notes and issues regarding the AL program
· Appendix A: terminology

1.2 Reference Documents

· CASAS Home Page: http://ailab.wsu.edu/casas
2. Downloading and Installing

In order to build and run the AL program, you must first download the appropriate files.

2.1 Download

The AL system, including documentation, papers, and research, can be found on the CASAS home page (http://ailab.wsu.edu/casas/tools.html). At this site, click on the version of AL you wish to download and save the file on your machine.
2.2 Files

Once you have downloaded the program and unzipped the files, the following directory/file structure is created:

./bin/

Directory of executables (initially empty)

/COPYRIGHT

File containing the AL copyright notice

./docs/

Directory containing this manual

./datasets/

Directory containing some sample sensor event input files

./readme.txt

File containing brief directions on how to build AL
./src/

Directory containing the source code and make files
2.3 Install

After downloading and unzipping the files, you can now install the AL application. Installation consists of actually building the application so that it is now native to your Unix/Linux system.

AL uses the standard make facility to build its application. In order to build the application, you should perform the following steps:

1. Change directory to src.
2. At the command prompt enter: make. This will compile the AL program.

3. At the command prompt enter: make install. This will copy the executables to the al/bin directory

4. At the command prompt enter: make clean. This will clean up the src directory (removing object files).

3. Data Format

The following section describes the format of the dataset that must be supplied in order to run the AL program.

3.1 Data
The AL application reads in a textual representation of a sequence of sensor events. Each line in this file contains a single sensor event in the format:

Date Time HighLevelSensorID LowLevelSensorID SensorValue <label>

The fields in this entry are separated by spaces. While AL will process any data that is syntactically correct, some of the models expect that the sensor events are presented in increasing time order in the input file.

3.1.1 Date
The date refers to the specific day on which the sensor event occurred. The current version of AL expects that the date will be presented in the format:

yyyy-mm-dd

3.1.2 Time

The time refers to the time of day at which the sensor event occurred. The current version of AL expects that the time will be presented in the format:

hh<:mm:ss.x*>

where the minutes, seconds, and milliseconds are optional and an arbitrary precision is allowed. In the current version of AL only the hour values are used to generate the models and recognize activities.

3.1.3 HighLevelSensorID

Each sensor that is used in the dataset has a specific ID which is represented by a string. The high level ID is an abstract representation of the sensor, often a room name combined with sensor type.
3.1.4 LowLevelSensorID

The low level sensor ID is a second sensor type that describes the sensor generating the event. The low level ID is a more specific functional description of the sensor, perhaps a specific object or area in a room of the building.
3.1.5 SensorValue

The sensor which generated the current event has a value for this event. Currently the sensor values are represented and processed as string values.

3.1.6 Label

Some of the datasets may be input as "labeled" datasets while others will consist only of sensor events without labels. In the case of labeled datasets, each sensor is labeled with the corresponding activity name. The interpretation is that this sensor event corresponds to an activity with the name “label”. If this activity is currently active, then this label is interpreted to mean that the current sensor event belongs only to this specific activity and not to any other activities that are currently active. If the activity is not currently active, then this individual event will constitute a separate occurrence of the activity. There cannot be a sensor event without an activity label. If there is no specific activity associated with the sensor event, then “Other_Activity” should be used to label this event.
3.1.7 Samples

The sampledata file in the ./sample directory of the installation illustrates a sample data file that can be input to AL. Additional data files can be found online at http://ailab.wsu.edu/casas/datasets.html.
3.2 Configuration Input

This is the file that is supplied to the AL application. It specifies values to the different parameters required by the AL application. The header file customizes operation of AL for the particular data file that is being used.

ParameterName ParameterValue(s)
The configuration or (.config) file is essential to run the program both in train and test modes. In train mode, AL creates model.config that stores various information associated with the training mode. In addition to the parameters specified in the input .config file, the model.config also contains the parameters used during the corresponding training run. The following sections detail the parameters that can be defined in the header file.
3.2.1 data
This parameter specifies the names of the files that contain the data. The AL application can read multiple data files. The parameter value for the “data” parameter should contain the name of the input file as follows:
data sampledata
3.2.2 sensor
This parameter refers to the string labels for the high-level and low-level sensor identifiers. Examples of these identifiers are bedroomdoor, loungechair, kitchendoor etc. These have to specified in the .config file on a single line as follows:

sensor bedroomdoor loungechair kitchendoor
3.2.3 activity

This parameter is automatically written by AL to the model.config file during training. It stores the names of the activities as learned during the training mode. It is essential to retain the activity names in this same sequence while testing, as the decision tree models store the activity labels in terms of the activity indices in this sequence.
3.2.4 output

This parameter specifies output level of AL using the format:

output level

The level is an integer. AL currently processes different granularity of output for levels 0 through 3.
3.2.5 model

This parameter is used by AR and AP. The parameter value modeldirectory specifies the name of the directory in which the activity model files have to be stored. This directory is created in the current directory and the output files are stored in this directory. An example usage of this parameter is

model modeldirectory

3.2.6 mode
This parameter specifies the mode in which the AL application is to be used. The format for this parameter is

mode modevalue
Currently AL supports five modes. The default value of mode is 0 if the value is not specified in the config file. The mode values are:

· mode 0: This is train mode. In train mode, AL trains recognition or prediction models based on the input data.
· mode 1: This is test mode. In test mode, AL loads the already-learned model from a model file and reads sensor data from an input source (a file, an SQL database, or the CASAS middleware). If the ANNOTATION constant is set to TRUE then the input data should be unlabeled and AL will print each sensor even with the corresponding activity label generated by the model. If ANNOTATION is false then AL will use the learned model to generate an activity label and will compare it with the predefined activity label to determine the performance of the learning algorithm.

· mode 2: This is cross validation mode. In this mode, AL will test the performance of the learning algorithm using k-fold cross validation. The value of k is specified as a constant in the al.h header file.

· mode 3: This is track mode, which is used to model and track a person's normal routine. This is a multi-stage learning process in which AL first uses AR to learn a model of the predefined activities. Next, AL employs self training in that it labels as many of the Other_Activity events using the learned model as it can. Those Other_Activity that cannot be labeled with sufficiently high probability are left with the Other_Activity label. In the next step, AD is used to discover activity patterns among the Other_Activity event sequences. AR is then used to model the predefined activities as well as the discovered activities. AR uses self training once more to label as many remaining Other_Activity events as possible and relearn the models. Finally, all of the input sensor events are labeled using the learned activity models.
· mode 4: This is prompt mode and is used only in combination with the activity prediction (AP) component. Prompt mode assumes that an activity prediction model has previously been learned and stored in a file. In prompt mode, AL loads each learned activity prediction model that is finds in the model directory. AL then processes sensor events from the input source (a file, an SQL database, or the CASAS middleware). For each learned activity, AL will generate a prompt when the number of seconds until the activity is expected to occur is less than or equal to the promptseconds parameter.

While creating the model.config in the training mode, the AL program automatically sets the value to this parameter as 1, corresponding to the test mode.
3.2.7 ignoreother

When this parameter is specified, Other_Activity activities will not be recognized, predicted, or labeled. If the parameter is not specified then Other_Activity will be treated as a separate class to model, recognize, and predict.

ignoreother
3.2.8 topn

When this parameter is specified and AL is in TEST mode, AL will report more than one possible activity label for each sensor event, ordered by activity probability. The number of labels AL reports is specified by the value of topn. The format for this parameter is

topn value
3.2.9 predictactivity

When this parameter is specified and AL is learning activity predictions in TRAIN mode, AL will learn an activity prediction model for the specified predactivity label. When this parameter is specified and AL is predicting activities in TEST or PROMPT mode, AL will evaluate performance or generate prompts for the specified activity. The format for this parameter is

predictactivity activityname
3.2.10 numiterations

This parameter is used by AD. The parameter specifies the number of iterations that will be made over the input data in which patterns are discovered in the data and used to compress the dataset. If the parameter is not specified the default value of 1 is used. A value of 0 causes AD to iterate until no compression is possible. The format for this parameter is

numiterations 0

3.2.11 promptseconds

This parameter is used by AP. The parameter specifies the number of seconds in advance of an activity that the activity will be prompted to the user. If the parameter is not specified the default value of 300 is used. The format for this parameter is

promptseconds value
3.2.12 translate

When this parameter is specified, AL maps sensor and activity names from the input data file to different names as specified by the translatefile. This is useful if more abstract (or simply different) names are used for sensors and activities then what is found in the raw data. The translatefile contains any number of lines, and each line contains the name of a sensor or activity together with the name to which it should be mapped. The format for this parameter is

translate translatefile
3.2.13 site

This parameter is currently used by AL only when data is being read to and from an SQL database. The sitename is used to specify which dataset to retrieve, process, and label. The format for this parameter is

site sitename
3.2.14 weight

This parameter corresponds to the weighting mechanism that is used for computing the feature vector. The parameter can take the following different values

0 - no weighting of the sensor events (this is the default value if not specified in the file)

1 - time based weighting of the sensor events

2 - mutual information based weighting of sensor events

3 - combination of time based weighting and mutual information based weighting of sensor events

For more details about the different weighting schemes refer to CASAS publications. This parameter name should be followed with an integer weight for each sensor that is used in the data file. An example usage of this parameter with time-based weighting is

weight 2
3.2.15 mi

This parameter is automatically written by AL to the model.config file during training. This parameter name should be followed by an integer value for each sensor pair (#sensor2 values in total). It corresponds to the mutual information values between the sensors. AR and AP use these to weight sensor counts in the input feature vector.
3.2.16 fsenact

This parameter is automatically written by AL to the model.config file during training. This parameter name should be followed with an integer value for each sensor that is used in the data file. It represents the most likely activity associated with each sensor event. AR and AP use these values to determine an appropriate streaming window size.
3.2.17 factwind

This parameter is automatically written by AL to the model.config file during training. This parameter name should be followed with an integer value for each sensor that is used in the data file. It represents the strongest window size to use for each activity. AR and AP use these values to determine an appropriate streaming window size.
4. Executing The Program
The purpose of the AL program is to learn models that describe activities based on sensor data that is collected while the activity is performed. The ability to learn these models is controlled by various user-specified parameters, which control the methods that are used.

3.3 Command

AL uses a command-line interface. In order to run AL, you must be logged on to the Unix machine where the application was downloaded and installed. From the Unix prompt, the command would be as follows:

al [-rdpaf] ConfigFile [DataFile]
There are several points which should be noted here:

· al is the name of the executable. The above example assumes that you are running the application from the same directory where the executable resides (which is probably in ./bin/). If the desire is to run the application from another directory, al will have to be included in the user’s path.

· The options to AL are:

· -r: Use the activity recognition (AR) component within AL to learn and recognize activities.
· -d: Use the activity discovery (AD) component within AL to discover activity patterns from unlabeled data.

The output that is generated by executing the AD component consists of a textual description of the patterns. In addition, a new file is created named <DataFile>.annotated, where <DataFile> is the file name that is supplied as input to AL. The new file contains all of the sensor events and predefined activity labels as the original input file except for some of the Other_Activity labels, that may be replaced with the pattern name to which the sensor event belongs.

· -p: Use the activity prediction (AP) component within AL to predict the timing of upcoming activity occurrences.

· -a: Provide labels for sensor events provided by the CASAS middleware based on a previously-learned activity model. In order to use this option the CASAS middleware must be installed on the system and GLOOX must be set to true in the Makefile.

· -f: Provide labels for sensor events extracted from an SQL database based on a previously-learned activity model. In order to use this option sensor events must be stored in an SQL database following the CASAS sensor event schema.

· ConfigFile is the name (and path) of the configuration input file.

· DataFile is the name(s) of the data files each separated by a space. This is an optional parameter if it is not specified within the config file.
In the train mode the AL program learns the activity models and stores them in the directory specified by the model parameter in the config file. In addition, it also stores the activity recognition, discovery, or prediction models in the specified directory. The generated config file that is stored in the model directory must input to the AL program for testing the models stored in the corresponding directory.
3.4 Other Tools

The following sections cover various tools that are available on the CASAS web page.

3.4.1 CASASViz

This tool is written in Python and is used to visualize a sequence of sensor events and the distribution of activity occurrences.

3.4.2 SDG

This tool is written in C and creates synthetic sensor data emulating various activity patterns.
3.4.3 AD Pattern Visualizer

This tool provides a visual description of patterns discovered by AD.

3.4.4 AV Activity Visualizer

This tool provides a visual description of predefined activities and their occurrences in a particular dataset of sensor events.

3.4.5 Real-time Annotation Tool

This tool provides an aid to label sensor events with corresponding activity information in real time as they occur.

3.5 Sample Dataset
The following sections describe the sample dataset that is provided with AL. The sample config file is named ds1.config. The corresponding data file that is processed is the file ds1. This example can be used to test the AR and AP components of AL. The ds1 data was collected from a single-resident apartment and was labeled with activities by an external annotator. The ds1.config file includes parameters for:
· the list of sensor names (43 in total)

· the weighting mechanism to be used by AR (in this case the value is 1 so AR uses time-based weighting)

· the data file (ds1)

· the mode (in this case the value is 0 so AL is run in train mode)

· the model directory (in this case a directory will be created called model)

· ignoreother (the Other_Activity is ignored)

· predictactivity (if AP is used then the specified Sleep activity will be predicted, in AR mode this parameter will be ignored)

To train AR on this dataset, type

./al -r ds1.config

When the program finishes you will see a new model directory created that contains a file called model (specifications of the learned activity models) and model.config. To test AR on the same dataset, type

./al -r model/model.config ds1

Alternatively, you can change the mode value from 0 to 2 and AR will train and test the model using k-fold cross validation.

This same config file can be used to run the AP component. This time type

./al -p ds1.config

To test the learned prediction model, type

./al -p model/model.config ds1
Finally, AD can be tested using this config file. To do this, type

./al -d ds1.config
Note that when the program finishes the discovered pattern is reported as output and a new file called ds1.annotated is created. In this annotated file instances of the discovered pattern are labeled with the pattern name instead of the Other_Activity label that originally appeared.
4. Notes/Issues

The following sections represent various notes and issues.

4.1 Unix

AL was designed and developed to run on a Unix-based system. The application was tested on Linux, but should be compatible with any Unix system. AL is written in C/C++, where every effort was made to use only standard ANSI C constructs and functions.

4.2 Decision Tree Algorithms
The AL Program uses the C4.5 version of a decision tree algorithm. The details of this implementation can be found here:
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
The AL Program also contains an implementation of an M5 regression tree algorithm. The details of this implementation can be found here:

J.R. Quinlan. Learning with continuous classes. Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence, pages 343-348, 1992.

4.3 AL Algorithm

For more information about the AL algorithm, please refer to the CASAS papers available at http://ailab.wsu.edu/casas/pubs.html. Projects which use the AL program should reference the appropriate paper.
· When using activity recognition, cite this paper:

N. Krishnan and D. Cook. Activity recognition on streaming sensor data. Pervasive and Mobile Computing, 2013.

· When using activity discovery, cite this paper:

D. Cook, N. Krishnan, and P. Rashidi. Activity discovery and activity recognition: A new partnership. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2013.

· When using activity prediction, cite this paper:

D. Cook and L. Holder. Automated activity-aware prompting for activity initiation. Gerontechnology, 11(4):1-11, 2013.

· When using the AL system as a whole or the CASAS datasets, cite this paper:

D. Cook, A. Crandall, B. Thomas, and N. Krishnan. CASAS: A smart home in a box. IEEE Computer, 46(6):26-33, 2013.

Appendix - Terminology

The following terminology was referenced in this document:

AL –
Activity Learning program
AR –
Activity Recognition

AD –
Activity Discovery

AP –
Activity Prediction
[image: image1.png]
vii
_MCI Confidential___

Integrating Subdue with Analyst Notebook

v
July 12, 2013 KEYWORDS * MERGEFORMAT

