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          Activity recognition has a promising role in various applications such as 

health care, psychology, and security.  Choosing an appropriate sensing modality 

to gather data is one of the most important factors in effective activity 

recognition.  The sensory modality has an impact both on the final results and 

also on the degree to which users will accept the technology. In this work we 

evaluate different sensing technologies (Environmental, Object and Wearable) for 

the purpose of activity recognition in smart environments based on the type of 

activities being recognized.  

In this thesis, we introduce different sensing technologies and discuss both the 

positive points and the limitations of each. We also conduct experiments in a real 

home setting with participants performing common activities of daily living. 

Alternative data features and activity recognition algorithms are tested with the 

goal of determining an optimal sensor class for a type of activity. We discuss 

results based on different sensor combinations and provide suggestions about 
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which sensor technology is most suitable for recognizing a particular class of 

activity.  

In addition, this study introduces the notion of a suffix tree to adapt pattern 

discovery techniques to the problem of activity recognition with wearable 

sensors. This model is evaluated using data gathered from wearable 

accelerometers. 

Finally, we present a formal analysis of activity complexity. By defining 

measurements in terms of three dimensions, sensing, computational and 

performance, this analysis characterizes activities in terms of a complexity 

measure. Moreover, we introduce grammars as a formal representation of 

activities and propose such grammars as an approach for measuring the 

complexity of an activity. 
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CHAPTER ONE 

1. INTRODUCTION 

            

1.1 Motivation        

          The life style of humans is moving toward automation; computers and 

automated devices in our environment are used more and more in order to 

support our day-to-day tasks. Ubiquitous computing, as an extension of home 

automation, tries to integrate information processing into everyday objects and 

activities. It is defined as “machines that fit the human environment instead of 

forcing humans to enter theirs” (York & Pendharkar, 2004). Nowadays, 

automated devices can be found in common devices in every home, such as 

washing machines, dryers, ovens, refrigerators, TVs, and so forth. Yet calling a 

building equipped with automated devices a smart home is not appropriate. 

“Smart” should refer to anything that is equipped with Artificial Intelligence; 

something that can learn and reason about its surroundings. 

Winston has defined Artificial Intelligence (AI) as “The study of the 

computations that make it possible to perceive, reason, and act” (Winston, 1992). 

An intelligent agent (Russell & Norvig, 2003) is one that perceives its 

environment through sensors and acts on the environment through actuators. 

Thus, smart environments need sensors and actuators and most importantly they 

need to map perceptions to actions through reasoning.  
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Smart environments can be found in different settings and applications. One 

setting is a smart home, which refers to any living space with characteristics of a 

smart environment. The study reported in this thesis has been conducted in the 

Center for Advanced Studies in Adaptive Systems smart home, which is part of a 

multidisciplinary project at Washington State University. The home has certain 

overall goals, such as minimizing the cost of maintaining the home and 

maximizing the comfort of its inhabitants. In order to meet these goals, the house 

must be able to reason about and adapt to information provided by system 

designers and residents.   

Activity recognition aims to recognize the actions and goals of one or more 

agents from a series of observations on the agents' actions and the environmental 

conditions. Activity recognition in smart homes supports many different 

applications such as healthcare, human computer interaction, security and 

sociology; therefore, since the 1980s this research field has captured the attention 

of several computer science communities. In the past 6 -7 years, there has been 

significant advancement in the area of ubiquitous, pervasive and wearable 

computing resulting in the development of a variety of low bandwidth, data rich 

environmental and body sensor networks. 

While activity recognition has different applications, this study is motivated by the 

need for assistive technologies for individuals with mild cognitive impairment or 
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Alzheimer‟s disease and in general for elder care. This study looks at two areas 

not addressed in current activity recognition research and tries to close some of 

the gaps in this area.  

One of the issues to address is the lack in earlier research of using all sensor types 

in one study, which prevents researchers in this field from having a fair and 

complete comparison between different sensing technologies. Conducting 

experiments using a variety of sensing technologies helps researchers to compare 

results from different sensor combinations and ideally find the best one for 

activities in their interest.  We hypothesize that using more sensor types does not necessarily 

provide us with the best result; however, each sensor modality performs better in recognizing a 

particular subset of activities.  

The other important need is providing a means for researchers in the activity 

recognition area to choose proper activities for their study. The lack of having a 

meaningful measurement for classifying different activities has led researchers to 

do it based on their own needs and requirements. This measurement is useful for 

assessing older adults, individuals with cognitive disabilities and those with 

chronic diseases, in order to evaluate what type of health care services an 

individual may need. There are many Activity of Daily Living (ADL) lists 

published in the Psychology domain; however, each research group has 
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concentrated on a subset of this list according to their own needs and 

requirements (Liao, Fox, & Kautz, 2005; Orr & Abowd, 2000). 

In summary, with each recognition system considering its own set of activities 

and sensor types, it is difficult to compare the performance of these different 

systems and more importantly it makes the task of selecting an appropriate set of 

technologies and tools for recognizing an activity challenging. 

1.2 Contribution of this Thesis 

          The main contribution of this thesis is to provide a comparative study on 

different sensor modalities for activity recognition. Experiments using different 

sensor types are conducted with multiple residents in the CASAS smart home. 

Different combinations of sensing technologies are tested and the results are 

evaluated based on each set. In this study we mainly focus on ADLs and iADLs 

and experiments are conducted with a number of these activities that are most 

common. 

The sensing platform used in this thesis can be classified into three main 

categories: Environmental, Object and Wearable. Environmental sensors consist 

of infra-red motion detectors which are used for localization of an individual in 

the house, magnetic door sensors, ambient temperature sensors, stove burner 

sensors, water flow sensors, and whole-house power meters. Object sensors 

include item presence sensors and shake sensors and wearable sensors consist of 



 

5 

accelerometers along with gyro sensors that participants wear during the 

experiments. 

Having this almost complete sensing platform provides us with a means to 

compare activity recognition in different sensing technologies. Then we will be 

able to study the relationship between different activities and sensor types. We 

hypothesize that each activity class can be recognized most accurately with one 

particular class of sensor types.  

In order to achieve this goal we add wearable and object sensors to the existing 

sensing platform in the CASAS smart home which was up to this point equipped 

with only environmental sensors. Previous studies with environmental sensors 

have been very successful in recognizing many activities, but still have trouble 

with distinguishing some classes of activities. In particular, activities which take 

place in the same area but perform different functions can be difficult to 

distinguish, such as washing hands and washing the dishes. In these cases the 

need for other sensing technologies such as wearable and object sensors becomes 

apparent.  

In general, the more sensors you use, the higher accuracy you may possibly 

achieve, but there are some drawbacks. As discussed by Bao and Intille (Bao & 

Intille, 2004), using more sensors requires more computational power. More 

sensors are harder to deploy, they do not integrate well into the daily clothing and 
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they can be expensive. In addition, if sensor values are fed directly as features into 

a machine learning model then more training data will be needed to learn the 

complex model. These problems are compounded in the context of technology-

assisted living, since the target community consists of older individuals and 

persons with disabilities. As a result, our goal is to minimize the number of small 

and lightweight sensors used for activity recognition as well as to minimize the 

impact on the daily lives of individuals who use the technologies. 

A second contribution of this study is an analysis of the complexity of activities 

and a formal representation of activities. This study attempts to characterize 

activities in terms of a complexity measure. We define activity complexity along 

three dimensions – sensing, computation and performance and illustrate different 

parameters that encompass these dimensions. We look at grammars for 

representing activities and use grammar complexity as a measurement for activity 

complexity. We then describe how these measurements can help evaluate the 

complexity of activities of daily living that are commonly considered by 

researchers. 
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CHAPTER TWO 

2. ACTIVITY RECOGNITION 

          

2.1 Overview      

          Activity recognition is a widely researched area with applications in health 

care, security and other domains which provides context-aware services. At one 

end of spectrum are certain activities such as ambulation that can be defined by 

movements or posture, while at the other end are activities that are defined by 

interacting with objects such as ironing and working on a computer. Activity 

recognition systems for detecting this complex subset of physical activities require 

a variety of sensing and processing methodologies. A single recognition system 

will not be sufficient for recognizing this variety of activities. 

One major consumer of this technology would be elderly and disabled people. 

Activity recognition plays an important role in developing assistive technologies 

for aiding older adults in leading an independent life. The post-World War II 

baby boom has had an effect on many western countries including the United 

States. Baby boomers are now late middle age and are entering the senior years. 

In the economy, many are now retiring and leaving the labor force. According to 

the US Census Bureau projections, the relative size of the older population in 

2015 will reach 14% as compared to its current level of 12.4%. In 2030, older 
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adults are projected to comprise almost 20% of the total population (He, 

Sengupta, Velkof, & DeBarros, 2006). 

The increasing health care and nursing costs place a tremendous stress on the 

society and the government. Assisting older adults to stay at their own homes is 

financially and emotionally beneficial. This is called “aging in place” and has been 

of significant interest recently. Smart homes help older adults and people with 

disabilities to stay at home and maintain their normal life without the need to stay 

in healthcare facilities. The aging population has also generated significant interest 

by the government as well as industry leaders to develop home automation 

systems for the elderly (Hawes, Phillips, Rose, Holan, & Sherman, 2003). The 

number of research projects in this field is still growing. 

Many of these older adults will suffer from cognitive diseases such as dementia. 

According to gerontologists, identifying changes in everyday behavior such as 

sleeping, food preparation, housekeeping, entertainment, and exercise is often 

more valuable than biometric information for the early detection of emerging 

physical and mental health problems - particularly for the elderly.  

Smart home technologies are able to help recognize early symptoms of dementia 

and other chronic conditions by detecting changes in patterns of behavior of 

residents. Medical professionals believe that one of the best ways to detect an 

emerging medical condition before it becomes critical is to look for changes in 
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the activities of daily living (ADLs), instrumental ADLs (IADLs) (Lawton & 

Brody, 1969), and enhanced ADLs (EADLs) (Rogers, Meyer, Walker, & Fisk, 

1998). Recognizing resident activities helps in understanding difficulties faced by 

the individuals in completing the activities or recognizing incomplete activities 

such as taking medication. 

The other application of activity recognition in smart environments is designing 

new architectural tools which can assist normal people in day to day tasks. They 

can be used in task automation such as lighting and HVAC control. Saving 

energy is another useful feature of a smart home (Chen, Das, & Cook, 2010). 

Security systems that are able to create a model of people's activities and behavior 

over time could predict intent and motive as people interact with the 

environment. 

2.2 Related Work 

          The significant potentials of automatic activity recognition have been 

realized for decades in the computer science communities. Since the 1980s 

researchers have been designing activity recognition techniques with increasing 

accuracy. However they have not been successful in evaluating these approaches 

in real applications until recent years. Even today, automated activity recognition 

systems have limited capabilities. They either focus on very basic activities or very 

unique activities in specific environments. It is very challenging to build an 
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unintrusive sensing platform to collect the data from real users, annotate the data 

with ground truth labels for training and testing purposes, and design efficient 

algorithms to learn and accurately recognize activities. . Current approaches in the 

literature differ according to the type of sensor that is used for data collecting and 

the machine learning algorithm that is designed to model activities. In the 

following sections we present a literature survey of different technologies and 

algorithmic models and discuss challenges that are facing activity recognition 

methods in more detail. 

2.2.1 Sensing Modalities 

          Here we discuss different sensor modalities which are available and 

commonly used by activity recognition researchers. These modalities mainly 

consist of environmental, object and wearable sensors.  

A) Environmental Sensors 

          An environmental sensor in an activity recognition context is a passive 

sensor that are integrated into the environment itself. Since objects can be seen as 

part of the environment, some researchers consider object sensors in this 

category. However, we tend to have more fined grained classification of sensor 

types, thus we dedicate a separate category for object sensors.  

The most common environmental sensors used in activity recognition are motion 

detectors (section 3.1.1). These sensors can be used to recognize room 
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occupancy; they need to be modified if they are needed for capturing the location 

of the resident in one room.  

The other common used environmental sensor is camera which has its own 

benefits and limitations. In the following subsections we present previous studies 

with the most common environmental sensing modalities used in activity 

recognition. 

Robotic devices. Bennewitz et al. (Bennewitz, Burgard, & Thrun, 2002) 

proposes an algorithm that learns collections of typical trajectories that 

characterize a person‟s motion patterns. Data recorded by mobile robots 

equipped with laser range finders is clustered into different types of motion using 

the popular expectation maximization algorithm, while simultaneously learning 

multiple motion patterns. Experimental results obtained using data collected in a 

domestic residence and in an office building, illustrate that highly predictive 

models of human motion patterns can be learned. This robot can be seen in 

Figure 1. 



 

12 

 

Figure 1. Pioneer I robot used to record the data 
(left) and Person moving in the environment 
(right). Figure has been adapted from (Bennewitz, 
Burgard, & Thrun, 2002) 

Combinations of audio and video. Oliver et al. (Oliver, Horvitz, & Garg, 2002) 

have described the use of the representation in a system that diagnoses states of a 

user‟s activity based on real-time streams of evidence from video, acoustic, and 

computer interactions in an office environment. 

Vision based Systems. In the computer vision community there is considerable 

work on behavior recognition using probabilistic models, but it usually focuses on 

recognizing simple low-level behaviors in controlled environments (Jebara & 

Pentland, 1999). Recognizing complex, high level activities using machine vision 

has only been achieved by carefully engineering domain-specific solutions, such 

as for hand-washing (Mihailidis, Carmichael, & Boger, 2004; Hoey, Bertoldi, 

Poupart, & Mihailidis, 2007), or operating a home medical appliance (Shi, Huang, 
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Minnen, Bobick, & Essa, 2004) or very basic interactions such as punch, hug, 

shake hands (Park, Park, & Aggarwal, 2004).  Messing et al. (Messing, Pal, & 

Kautz, 2009) propose an approach for recognizing activities in a kitchen using 

velocity profiles from videos. Essa et al. (Essa, Yin, Criminisi, & Winn, 2010) 

have built vision-based sensors to track multiple individuals in their smart home 

called “The Aware Home”. An extensive survey of vision based approaches for 

activity/gesture recognition can be found in (Gavrila, 1999). 

Researchers at Georgia Institute of Technology have built different laboratories 

such as Classroom, Wearable Computing Project, Aware Home, and Augmented 

Offices. In their Aware Home, they have vision-based sensors to track multiple 

individuals and they try to use similar signal processing techniques to build a 

smart floor interface that can identify and track people walking across a large area. 

There are many compelling applications for these sensing technologies 

throughout a home, such as support for the elderly or finding lost objects, or in 

specialized spaces within the home, such as the front door or the kitchen (Patel, 

Kientz, Jones, Price, Mynatt, & Abowd, 2007). 

The most important limitation of camera based sensors is intruding upon the 

privacy of the individual and hence is not an appropriate technology for 

monitoring patients due to privacy concerns by residents. Being costly and need 

of large space for recording video streams is the other disadvantage of this kind 
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of sensor. Moreover, computer vision based techniques for extracting motion 

and object information from images and videos are expensive, cumbersome and 

inaccurate due to changes in poses and illustration.  Finally, designers of vision-

based activity recognition have to deal with difficult issues such as selecting 

locations for the camera, tracking residents, and compensating for occlusion and 

lighting conditions. 

Eye tracking sensor. This is a very recent technology that has been used for 

activity recognition. It was first demonstrated by Bulling et al (Bulling, Ward, 

Gellersen, & Troster, 2009). It uses the principle of electro-iconography to track 

eye movements. The hypothesis is that eye movements of an individual varies 

depending on the activity that is being performed. In their work they have 

attempted at using this technology for recognizing activities such as working on a 

computer, reading, and writing. 

 Location Based Systems. One of the most important factors in activity 

recognition is recognizing the location of an individual. Many activities can be 

recognized only from knowledge about the location. 

Satellite-based location systems. Currently GPS is the most widely used location based 

systems. The Global Positioning System (GPS) is a space-based global navigation 

satellite system (GNSS) that provides location and time information in all 

weather, anywhere on or near the Earth, where there is an unobstructed line of 
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sight to four or more GPS satellites. It is maintained by the United 

States government and is freely accessible by anyone with a GPS receiver. 

Other systems are Galileo, a global system being developed by the European 

Union, planned to be operational by 2014. However, the important limitation of 

satellite-based systems is a noticeable increase in error when receivers are indoor 

or close to tall buildings. That‟s why it is not practical for ADL recognition in 

smart homes. 

WiFi-based location systems. The other widely used location based systems are Wifi-

based ones which don‟t have satellite-based system‟s limitations. Another positive 

point about WiFi is that most notebook computers, PDAs and some mobile 

phones today are equipped with WiFi devices, so it is widely accessible.  One 

example of an indoor location based system based on WiFi is RADAR (Bahl & 

Padmanabhan, 2000).  

Triangulation can then be used with WiFi to determine the location of a person 

of object. However, signal strength is influenced by a number of factors other 

than distance, including obstacles, reflection, and refraction, so in practice it is 

virtually impossible to obtain an accurate propagation model. 

Mobile-phone-based location systems. These systems have the benefit of working 

indoors and outdoors. They have two different architectures: station-based and 
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client-based. Client-based systems are cheaper and give end users more controls, 

but the handsets have to maintain the location databases and support complex 

programming interface. 

Pressure Sensors. These sensors measure changes in the pressure exerted on 

them. They are primarily force-sensing resistors that decrease resistance with 

increasing force. Multiple pressure sensors are typically used in combination for 

sensing pressure changes across a defined area. A well-known device that uses 

pressure sensing is the WiiFit balance board. For activity recognition, pressure 

sensors can be integrated into the floors and carpets in an environment to 

determine the location of an individual as discussed by Orr and Abowd (Orr & 

Abowd, 2000) and Richardson et al. (Richardson, Leydon, Fernstrˆm, & Paradiso, 

2004). The resolution of the pressure-sensing units within a certain area 

determines the reliability of the mechanism for determining the location of an 

individual. Processing the data stream from these sensors to track the movement 

of an individual is considered to be a hard problem. With further advances in the 

hardware, this type of sensor will be an effective device for estimating the 

location of an individual. Moreover, pressure sensors can be integrated into 

objects of everyday use such as a bed, and a chair. Integrating them into a bed 

helps in assessing the sleep quality of individuals. Two examples of pressure 

sensors can be seen in Figure 2. 
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Figure 2.  Mutlu et al. (Mutlu, Krause, Forlizzi, 
Guestrin, & Hodgins, 2007) have instrumented a 
chair with pressure sensors, in order to 
enable seating posture recognition in left. 
Honeywell‟s Trustability pressure sensor in right. 

Passive Infrared Sensor. A passive infrared sensor (PIR) is an electric device 

that uses infrared rays to sense motion when heat changes in its field of view. 

These are commonly used in location-based systems. An example of infra-red 

motion detectors is shown in Figure 3. A network of PIRs embedded in an 

environment can be used to track the movement of people and identify their 

locations. Thus a PIR sensor provides an unobtrusive mechanism for sensing the 

location of an individual, thereby aiding in recognizing the activity at a high level. 

Motion detectors are widely used in smart environments because they are cheap, 

easy to install, computationally inexpensive, require minimal maintenance and 

supervision, and do not have to be worn or carried (Singla, Cook, & Schmitter-

Edgecombe, 2008; Wilson, 2005). While these sensors are easy to install and 

provide highly specific data to support activity recognition, they are difficult to 

use when there are multiple people in the environment. Crandall has studied this 
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challenge in detail (Crandall, 2011). Furthermore, these sensors alone do not 

provide the fine level of information that is required to track the progress of 

activities.  

Wilson (Wilson, 2005) has used binary sensors including wireless X10 Hawkeye 

motion detectors to perform location tracking. In his research, he has looked at 

two main problems: tracking individuals and activity recognition; the latter is in 

the interest of this study. The results strongly indicate that knowledge of location 

is a key to activity recognition. In almost every activity they saw a statistically 

significant increase in accuracy as they move from no location information up to 

perfect location information. Wilson realized that while using environmental and 

object sensors, more sensors will increase accuracy, regardless of the number of 

occupants. A low sensor density contributes to significant periods of time 

between readings (especially with only one occupant). During these “quiet” times 

no new information arrives to help the tracker recover from mistakes (such as the 

lag between entering a new room and triggering a sensor). Motion detectors are 

the most active sensors, and a lack of them hurts accuracy the most. 

Singla et al. in (Singla, Cook, & Schmitter-Edgecombe, 2008) have used 

environmental motion detectors for activity recognition in CASAS smart home. 

They were able to classify 8 common ADLs. To overcome limitations of motion 

detectors they considered temporal features as well. Temporal features helped 
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them to distinguish between activities that take place in the same location thus 

improved accuracy. Kim et al. (Kim, K. N. Ha, Lee, & Lee, 2009) uses the 

pyroelectric infrared sensor-based indoor location-aware system and presents an 

enhanced location-recognition algorithm using a Bayesian classifier for activity 

recognition. 

The Adaptive House at University of Colorado is a real house, with 

environmental sensors such as temperature, ambient light levels, sound, motion, 

door and window openings, and actuators to control the furnace, space heaters, 

water heater, lighting units, and ceiling fans. Control systems in the residence are 

based on neural network reinforcement learning and prediction techniques 

(Mozer, Pashler, Wilder, Lindsey, Jones, & Jones, 2010). 

Some of the features of the Adaptive House consist of predicting when the 

occupants will return home and determining when to start heating the house so 

that a comfortable temperature is reached by the time the occupants arrive; 

detecting statistical patterns of water usage, such that hot water is seldom if ever 

used in the middle of the day on weekdays, allowing the water heater to shut off 

at those times; inferring where the occupant is and in what activities the occupant 

is engaged - perhaps he is reading at the kitchen table - and controlling lighting 

patterns and intensities accordingly, even anticipating which rooms are about to 

be entered and turning on the lights before the room becomes occupied. 
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Working with these motion sensors can be challenging, particularly when they are 

used for exact location detection as opposed to presence detection sensors. Some 

modifications need to be made to the sensor in order to narrow the view angle. 

Different applications need different settings of how long they need to remain on 

after being triggered. As a result, accurate calculation is needed based on the 

sensor type and application. 

 

Figure 3. Examples of common infrared motion 
detectors. 

B) Object Sensors 

          In the activity recognition area, any sensor that provides us with 

information about the objects that an individual uses or manipulates can be 

considered as an object sensor. An effective way to understand what someone is 

doing is to collect and analyze information about the objects with which they are 

interacting (Hodges, Newman, & Pollack, 2009). There are a variety of sensor 
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types that can be used as object sensors; including binary contact switches, shake 

sensors and RFID tags.  

In an activity recognition study, Hodges and Pollack (Hodges, Newman, & 

Pollack, 2009) exploited the regularities between object usage and activity 

performance in a different way. Given data about object use collected during the 

performance of a known activity, they inferred the identity of the person 

performing the action, calling the regularities between a person‟s interaction 

patterns and their performance of an activity their “object-use fingerprint.” They 

showed that even with very simple machine-learning techniques, they could 

identify subjects about three-quarters of the time, a rate of success that was well 

above chance. 

Using object sensors is mainly done using three technologies: RFID tags, shake 

(movement detection) sensors and vision based techniques with the use of 

cameras. These sensors are discussed in more detail in the following subsections. 

1) Radio Frequency Identification (RFID) tags 

RFID tags can be used both for location detection (Wilson, 2005) and object 

interaction (Hodges, Newman, & Pollack, 2009). Studies using these tags collect 

information about object use by utilizing a glove or bracelet outfitted with a 

RFID antenna. Notably, RFID antennae are able to discriminate among specific 
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instances of objects that are otherwise the same (e.g., two spoons), with a 0% 

false positive rate (Want, 2003). 

 

Figure 4. This figure illustrates an example of 
RFID glove used in Patterson et al. study. 
(Patterson, Fox, Kautz, & Philipose, 2005) 

Newman and Pollack (Hodges, Newman, & Pollack, 2009) have used RFID tags 

for objects in the kitchen. They did experiments with Traumatic brain 

injury (TBI) patients participants. A learning algorithm, C4.5, has been used with 

features such as: detect (if the sensor is triggered), count (amount of time 

interaction occurred with an entity), average duration and order. Using the full 

feature set obtains the best accuracy of 71%.  
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Activities under study can have shared objects which make it harder for the 

classifier to distinguish them. However, many studies have looked at activities 

which don‟t have shared objects (Philipose, Fishkin, Perkowitz, Fox, Kautz, & 

Hahnel, 2004). In these cases, inference engines can simply be used to recognize 

performed activities. Only a few researches have looked at activities with shared 

objects. One is (Patterson, Fox, Kautz, & Philipose, 2005) which examines the 

advantages and challenges of reasoning with globally unique object instances 

detected by an RFID glove. What distinguishes that work from most activity 

recognition studies is that selected activities have shared objects and the study 

includes interleaved activities, in contrast with the typical approach of examining 

only segmented, sequential activities. 

In general, using RFID tags for activity recognition has the following drawbacks. 

First is lack of accuracy in detecting objects with little number of tags; sometimes 

the tag is on one side of the object and participant holds it from the other side. 

This prevents the glove or bracelet from firing the tag. The other problem is 

when a wrong tag is fired because the participant is close to the tag but is not 

really using the object. Second, participant has to wear RFID detector in the form 

of glove or bracelet which is usually uncomfortable and impractical. Moreover, it 

is not possible to put tags on many objects such as metallic. Finally, the theory of 

relying only on RFID tags leads to too many sensors on objects and as a result a 

lot of data needs to be annotated. Data annotation is one of the barriers in 
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current activity recognition techniques due to requiring considerable amount of 

time and energy. 

 Patterson et al. in (Patterson, Fox, Kautz, & Philipose, 2005) have demonstrated 

an example in their study which shows some of these flaws: In this example, the 

participant turns out a light and goes to the kitchen, where he opens the cup 

cabinet with his right hand (wearing the RFID bracelet), but reaches in with the 

left hand. The tags under the shelves usually fire when the bracelet reaches in, but 

the participant used the “wrong” hand to grab his cup. Cups don‟t have tags 

because of the microwave. He puts the cup on the counter and opens the 

refrigerator with his right hand. No tags are on the front of the refrigerator 

because they did not work due to the metal surface. He reaches in with his right 

hand and a tag on one of the shelves fires. He grabs a bottle, which is untagged 

because it was recently purchased, and puts it on counter next to the cup. He 

leaves the refrigerator door open and walks out of kitchen into the hallway to 

speak to his spouse. He comes back and closes the refrigerator with his right 

hand and then walks to the living room to get a key chain that has a bottle opener 

on it. He reaches down to the table with his right hand, at which time a tag for 

another object on the table might have fired if he were just a few centimeters 

closer. He returns to the kitchen, opens the bottle and pours a glass. He takes the 

bottle to the untagged metal sink and rinses it several times holding the bottle in 

his right hand, without using the tagged soap. He takes a drink and then puts the 
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glass down and carries the bottle down the hall to the recycling area. A tag could 

fire at the recycle bin, but the area is large and even with 2 tags nearby, his hand 

does not get sufficiently close. He walks back to the living room and starts 

cleaning up, leaving the full cup in.  

Because of the issues mentioned above, even with having a one-to-one map 

between objects and activities, we don‟t usually see 100% accuracy using RFID 

technology alone. 

2) Object Movement Detection Sensors 

Although most studies interested in monitoring object usage have used RFID 

tags as their sensing technology, other technologies have been used.  These 

studies do not detail the same problems encountered with RFID, but they still 

have their own drawbacks.  Reed switches (Figure 5) or binary on/off sensors are 

primarily electric switches that operate by a magnetic field. These sensors typically 

consist of two surfaces that turn on the sensor on contact or vice versa. These 

components can be taped to objects in the environment for studies lasting up to 

several weeks. In the activity recognition context, these sensors are often used for 

determining the state of an object. For example, placing sensor on a door joint 

will facilitate detection of door being closed or opened. They can be placed near 

the stove knobs to detect if a stove is on or off, or even to determine if a light 

switch is turned on.  
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Tapia, et al. (Tapia, Intille, & Larson, 2004 ) looks at recognizing activities for 

medical applications such as toileting, bathing, and grooming with detection 

accuracies ranging from 25% to 89% depending on the evaluation criteria used. 

The study assumes all activities are sequential and only the primary activity is 

considered while a person is multitasking. The researchers define an algorithm 

which is able to merge and capture temporal relationships from data coming 

from multiple sensors efficiently. Two subjects perform activities off and on for a 

total study duration of two weeks. Object sensors are installed on many objects 

that are manipulated by the occupant, including light switches, doors, windows, 

cabinets, drawers, microwave ovens, refrigerators, stoves, sinks and kitchen 

containers 

Kasteren et al. in (Kasteren, Noulas, Englebienne, & Krose, 2008) conducted a 

28 day experiment using sensors on doors, cupboards, refrigerator and a toilet 

flush. They have compared two common probabilistic algorithms in activity 

recognition: HMM (Hidden Markov Model) and CRF (Conditional Random 

Fields) on different activities.  

Akin to the PIR sensors, reed switches are inexpensive and easy to install. The 

sensors output binary streams that typically do not require any additional 

processing for extracting information related to activities. Reed switches are more 

versatile than PIR sensors, because that they can be used in many different ways 
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to obtain activity information. For example, when attached to a door, these 

sensors can provide the location information of the individual, when it is attached 

to an object the sensor can act as an object recognizer.  

However, there are certain limitations to the use of this technology for activity 

recognition. As discussed with PIR sensors, reed switches do not facilitate 

tracking of multiple resident activities in an environment. They also do not 

provide the fine level of activity information that is required to track the progress 

of an activity to its completion. In Tapia‟s work (Tapia E. M., 2008 ), one subject 

reported that she was able to hear when the sensors were activated (magnetic 

reed sensor closing). This is one of the reasons why Tapia recommended to use 

an accelerometer instead of the external magnetic reed sensor in future systems. 

By using an accelerometer as an object sensor, any movement of the object can 

be detected. These sensors are sometimes called shake sensors (Figure 6). 

In his dissertation, Tapia (Tapia E. M., 2008 ) suggests that sensors might be built 

into architectural components and into furniture at the time of manufacture. 

However, we believe in order to have a practical smart home we need to have a 

sensing system that can be deployed in any house with their current furniture. 

Clearly, changing all furniture would not be a desirable approach for people who 

want to use this technology in their home or healthcare facilities.  
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Figure 5. Reed switches attached to different 
objects. The picture has been adapted from the 

work of Tapia et al. (Tapia E. M., 2008 ). 



 

29 

 

 

Figure 6. Examples of shake sensors that can be 
used for object movement detection. 

3) Object Sensors Summary 

Object sensors come in different types and shapes; each has its own positive and 

negative points. These sensors are more useful in detecting iADLs. In general, a 

number of limitations for using object sensors are as follows: 

 Some activities (e.g., walking) do not involve interactions with objects. 

 Many activities (e.g., dishwashing) involve objects which cannot use a 

sensor or tag. 
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 Placing sensors or tags on all objects is impractical. There are too many 

objects in a home, new objects are added every day and some objects are 

disposable (e.g., water bottles) 

 Many activities have shared objects which make them hard to be 

distinguished.  

C) Wearable Sensors 

Studies using environmental and object sensors have been very successful in 

recognizing a number of activities, but still have trouble with distinguishing some 

classes of activities. In particular, activities that take place in the same area but 

have different body gestures, such as reading and eating at the dining table, can be 

difficult to distinguish. In these cases the need for wearable sensors becomes 

apparent. There has been a considerable amount of research in activity 

recognition using wearable sensors. Advances in miniaturization are leading to 

sensors being embedded within wrist bands, bracelets, adhesive patches, and belts 

and they can even send data to a mobile computing device wirelessly.  

Accelerometers and gyros are the most commonly used wearable sensors in 

activity recognition because they provide motion information about different 

parts of the body such as hand, leg and hip. Other wearable sensors that are 

commonly used include microphones, GPS and light sensors. These provide 

additional information about the environment or location of a user that might 

help in the task of activity recognition. 
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Most previous works with wearable sensors have focused on basic gestures and 

low-level activities such as ambulation (Ermes, Prkka, Mantyjarvi, & Korhonen, 

2008), running, sitting etc (Bao & Intille, 2004).  The research literature 

demonstrates that forms of locomotion such as walking, running, and climbing 

stairs and postures such as sitting, standing, and lying down can be recognized at 

83% to 95% accuracy rates using hip, thigh, and ankle acceleration (Mantyjarvi, 

Himberg, & Seppanen). Acceleration data of the wrist and arm are known to 

improve recognition rates of upper body activities (Chambers, Venkatesh, West, 

& Bui, 2002; Foerster, Smeja, & Fahrenberg, 1999). 

Most previous works with multiple accelerometers have used accelerometers 

connected with wires, which may restrict subject movement. One of the few 

works to investigate performance of recognition algorithms with multiple, wire-

free accelerometers on different subjects is done by Bao and Intille (Bao & Intille, 

2004). Data is collected from five biaxial accelerometers placed on 20 subjects but 

has been collected under laboratory and semi-naturalistic conditions. Sensors are 

placed on each subject‟s right hip, dominant wrist, non-dominant upper arm, 

dominant ankle, and non-dominant thigh to recognize ambulation, posture, and 

other everyday activities. Mean, energy, frequency-domain entropy, and 

correlation features are extracted from the collected data. A decision tree classifier 

performed best among decision table, instance-based learning (IBL or nearest 

neighbor), C4.5 decision tree, and naïve Bayes classifiers. In their study, user-
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specific training resulted in an increase in recognition accuracy of 4.32% over 

recognition rates for leave-one-subject-out-training. This difference shows that as 

we expect given equal amounts of training data, training on user-specific training 

data can result in classifiers that recognize activities more accurately than 

classifiers trained on example data from many people. 

Bao and Intille (Bao & Intille, 2004) claim that since activity recognition system 

need to be trained only once before deployment, the slow running time for 

decision tree training is not an obstacle. Nonetheless, there may be limitations to 

a pre-trained algorithm. Although activities such as “running” or “walking” may 

be accurately recognized, activities that are more dependent upon individual 

variation and the environment (e.g. “stretching”) may require person-specific 

training.  

Lester et al. (Lester, Choudhury, & Borriello, 2006) have developed a personal 

activity recognition system that is practical and reliable. They claim that their 

system has the following characteristics. Data only from a single body location is 

needed, and it is not required to be from the same point for every user. It should 

work out of the box across individuals, with personalization only enhancing its 

recognition abilities. It should be effective even with a cost-sensitive subset of the 

sensors and data features.  
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They have tried to detect basic activities such as walking, standing, walking 

up/down stairs, riding up/down elevator and brushing teeth.  In their first 

experiment they used accelerometer alone. They tested their sensor on different 

parts of the body: wrist, waist and shoulder. They also conducted an experiment 

having sensors on all three locations. Interestingly, single body position 

performed better than all locations and the best result is from place a sensor on 

the wrist with an overall resulting accuracy of 45.81% and recall of 45.10%. In 

contrast, placing accelerometers on all three positions resulted in 41.15% accuracy 

and 38.96% recall.  

In another experiment Lester et al. (Lester, Choudhury, & Borriello, 2006) added 

two other sensors (microphone and barometric pressure) to the accelerometer 

and resulted in overall 78.18% accuracy and 87.05% recall. On the other hand, 

having sensors on all locations resulted in 82.07% overall accuracy and 81.55% 

recall. In both experiments HMM has been used as the classifier. This increase in 

accuracy demonstrates limitations of using accelerometers alone for activity 

recognition. Although this only examined basic activities, results show how 

important environmental information can be in classifying activities. Figure 7 

shows the sensor platform used for Lester et al. study (Lester, Choudhury, & 

Borriello, 2006). 



 

34 

 

Figure 7. Sensor platform for work of Lester et al. 
(Lester, Choudhury, & Borriello, 2006). 

One important factor while using wearable sensors is choosing the body position 

where the sensor is worn. The common body positions used in the literature are 

ankle, thigh, hip, waist, wrist and upper arm (Bao & Intille, 2004; Krishnan & 

Panchanathan, 2008; Kern, Schiele, & Schmidt, 2003; Lester, Choudhury, & 

Borriello, 2006). There have been a few studies on comparing different body 

positions for accelerometers, Bao and Intille in (Bao & Intille, 2004) evaluate the 

discriminatory power of each accelerometer location, recognition accuracy using 

the decision tree classifier (the best performing algorithm in their study). Their 

results show that the accelerometer placed on the subject‟s thigh is the most 

powerful for recognizing their set of 20 activities. Acceleration of the dominant 

wrist was more useful in discriminating these activities than acceleration of the 
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non-dominant arm. Acceleration of the hip is the second best location for activity 

discrimination.  

One bottleneck that is currently holding back assisted technology from being 

widely used is that many residents don‟t feel comfortable in current smart 

environments. For example, most studies on wearable sensors have used multiple 

sensors on different body positions (Lester, Choudhury, & Borriello, 2006), 

which would increase the dissatisfaction among users and therefore prevent the 

technology to become practical. On the other hand, using only environmental 

sensors is not sufficient for recognizing some of the important Activities of Daily 

Living (ADL). 

 The more sensors you use the higher accuracy you will get but there are some 

drawbacks. As discussed by Bao and Intille (Bao & Intille, 2004), using more 

sensors requires more computational power. More sensors are harder to deploy, 

they do not integrate well into the daily clothing and finally is expensive. These 

problems are compounded in the context of technology assisted living, since the 

target community consists of older individuals and persons with disabilities.  

In general, sensors used in assisted livings and smart homes are required to be 

easy to use, have long battery life, beautiful design and many more to be accepted 

by residents. In particular, wearable sensors need more attention in this regard, 

because residents need to wear them most of the time. Having an uncomfortable 
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and hard to use wearable sensor will discourage residents to wear them and 

subsequently results won‟t be as expected. That‟s why even with all current 

advances in this technology, a lot of research still needs to be carried out for easy 

adaptation of these sensors for activity recognition in real-life settings. 

One main challenge in designing wearable sensors is the excessive power 

consumption of the sensor due to wireless signal transmission.  The battery life of 

the sensor can thus be prohibitively short. Wearable sensors are attached to 

people who move constantly most of the times so sensors need to transmit data 

almost constantly.  

The most common type of wearable sensor for activity recognition is an 

accelerometer. It provides a unique and clean mechanism for capturing 

movements, but it is more often used to recognize basic movements of body 

parts (Ermes, Prkka, Mantyjarvi, & Korhonen, 2008). There are many practical 

and usability issues that still need to be addressed by the research community to 

facilitate wide spread adoption of the modality. 

Wearable sensors need perfect alignment and positioning of the sensor on body. 

In practical everyday use a fixed sensor position in relation to the body cannot be 

guaranteed. Even in the scenario where the sensor is attached directly to the 

body, the variations in the physical form of the person such as height, weight, and 

body mass index, in addition to age factors can result in different sensor outputs. 
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That‟s why finding a comfortable and practical garment for wearable sensors is 

still a challenging research.  

Other limitations of using wearable sensors for activity recognition, in particular 

for health monitoring are as follows. 

 The need for charging the batteries is an extra burden for residents, 

especially ones with cognitive disorders. 

 Most current technologies don‟t provide completely waterproof sensors, 

as a result they need to be taken out during some activities such as 

bathing. 

 People are often unwilling, forget, change clothes too often, or are not 

sufficiently clothed when at home to wear a badge, beacon, set of 

markers, or RF tag. 

As a result, our goal in this study is to use small and lightweight wearable sensors 

and minimize the number of such sensors that are required. We have tried to 

investigate the usefulness of using wearable sensors in order to be able to realize 

the trade-off between drawbacks and effectiveness of using wearable sensors in 

activity recognition. Figure 8 illustrates some common wearable sensors often 

used for activity recognition. 
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Figure 8. This figure illustrates examples of 
different wearable sensors. 

C) Combination of All Sensor Types 

          Logan et al. (Logan, Healey, Philipose, Tapia, & Intille, 2007) look at 

activity recognition with a combination of sensor types. Their sensing technology 

consists of RFID tags, motion sensors and accelerometers. First of all, RFID has 

issues that are discussed in section 2.2.1. 

Second, there are total of two residents in the home but only one is wearing the 

bracelet and activity recognition is done for just that person. In our experiment 
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we take advantage of multiple subjects so there is no activity that is performed by 

one participant twice.  

Their results show that infrared motion sensors have performed best among 

others, yet this is not a clear conclusion from the evidence. Since the study 

included a few infra-red sensors in the environment, for most activities there was 

a one-to-one mapping between sensors and activities they detected acceptably 

using infra-red sensors and their location was almost always where the targeted 

activities were performed in the house. As a result, infrared sensors performed 

very well in this study.  

D) Summary 

          In this section we summarize related work in activity recognition with 

wearable, environmental and object sensors.  Tables 1 and 2 summarize 

highlights of each of these sensor classes. 

Table 1. Summary of related work on activity recognition using accelerometer.. 
"Body position" represents position on the body where the accelerometer was 

worn and “Activities” represents the activities that are targeted in that study. 

Reference Body Positions Activities Accuracy 

 (Veltink, Bussmann, 

de Vries, Martens, & 

Van Lummel, 1996) 

Chest and thigh Posture (standing, 

sitting and lying) 
N/A 

(Mathie, Coster, 

Lovell, & Celler, 2003)  

Waist Sit-to-stand, and 

stand-to-sit and 

walking for the 

N/A 
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purpose of fall 

detection 

(Bao & Intille, 2004)  Upper arm, wrist, 

thigh and ankle 

Ambulation, posture 

and some ADLs  
89% 

(Chambers, 

Venkatesh, West, & 

Bui, 2002) 

Wrist Kung Fu 

movements 
96.6% 

(Lester, Choudhury, & 

Borriello, 2006) 

Wrist, waist and 

shoulder 

Ambulation, 

posture, riding 

elevator, walking up 

stairs 

90% 

(Mantyjarvi, Himberg, 

& Seppanen) 

On the belt Start/stop points, 

level walk, down/up 

stairs 

83%-90% 

(Al-ani, Ba, & 

Monacelli, 2007) 

On the belt Fall detection 
N/A 

   

Table 2. Summary of related work on activity recognition using environmental 
and object sensors. "Sensing technology" represents the types of sensors that 
were used, “Activities” represents the activity recognized in that study and 
“Accuracy” represents the overall accuracy achieved by that study. 

Reference Sensing 

Technology 

Activity  Accuracy 

(Wilson, 2005) Environmental and 

Object(motion 

detectors, break-beam 

sensors, pressure 

mats, contact 

switches, water flow 

sensors, current 

sensors, and wireless 

object movement 

Eating/drinking, housework, 

toileting, cooking, using a 

computer, watching 

Television and using the 

telephone 

19.28% - 

80.72% 
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sensors) 

(Singla, Cook, & 

Schmitter-

Edgecombe, 

2008) 

Environmental and 

Object (motion 

sensors, temperature 

sensors, humidity 

sensors, contacts 

switches in the doors, 

and item sensors on 

key items) 

Phone call, cooking, wash 

hands and clean up 

78.5% 

(Tapia E. M., 

2008 ) 

Environmental and 

Object (Binary 

sensors on doors and 

objects) 

Toileting, bathing and 

grooming 

25%-89% 

(Kasteren, 

Noulas, 

Englebienne, & 

Krose, 2008) 

Object (Shake 

sensors) 

Leaving, toileting, showering, 

sleeping, drinking and eating 

79.4% 

(Philipose, 

Fishkin, 

Perkowitz, Fox, 

Kautz, & Hahnel, 

2004) 

Object (RFID) Toileting, oral hygiene, 

washing, telephone use, 

taking medication and etc 

88% 

(Patterson, Fox, 

Kautz, & 

Philipose, 2005) 

Object (RFID) Using bathroom, making 

meals/drinks, telephone use, 

set/clean table, eat and take 

out trash 

81% 

(Hodges, 

Newman, & 

Pollack, 2009) 

Object (RFID) Making coffee 71% 
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2.2.2 Algorithmic Models 

          Another important factor in activity recognition is the algorithmic model 

that is used for classification.  In this section we present some of the most 

common machine learning algorithms used in this area. 

A) Bayesian Network 

          A Bayesian network (Pearl, 1988) is a directed, acyclic graph whose nodes 

represent random variables and whose edges indicate direct influence between 

variables. Bayesian networks have provided acceptable results in areas requiring 

inference under uncertainty. There have been two general approaches in the 

literature for using Bayesian network. The bottom up approach has been used by 

Charniak and Goldman (Charniak & Goldman, 1993). Their approach manually 

translates activity knowledge into an associative network. Then it uses a number 

of rules to automatically convert an associative network to the corresponding 

Bayesian network. The problem with this model is that it relies on general 

Bayesian network inference engines to solve the problem and thereby it cannot 

utilize the special relations among the variables.  

The other approach is a top-down approached, presented by Huber et al. (Huber, 

Edmund, & Wellman, 1994). In this model the Bayesian networks are 

constructed from the plan library before receiving any observations. 
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B) Logic Models 

        In general, a logic model sets out how an intervention (such as a project, a 

program, or a policy) is understood or intended to produce particular results 

(Rogers, Meyer, Walker, & Fisk, 1998). 

In an activity recognition context, logic-based approaches keep track of 

all logically consistent explanations of the observed actions. Thus, all possible and 

consistent plans or goals must be considered. Kautz‟s event hierarchy (Kautz, 

1987) is one of the earliest models for activity recognition. His model uses first-

order logic to represent the abstraction and decomposition relations. However, 

the model does not take uncertainty into account and it has an exponential time 

complexity in worst case, measured in the size of input hierarchy.  

As one step further, Lesh and Etzioni (Lesh & Etzioni, 1995) present methods in 

scaling up goal recognition to scale up his work computationally. Lesh and 

Etzioni's approach provides automatic plan-library construction from domain 

primitives, in contrast to Kautz's approach where the plan library is explicitly 

represented. Furthermore, they introduce compact representations and efficient 

algorithms for goal recognition on large plan libraries. In addition, they present 

methods for adapting a goal recognizer to handle individual idiosyncratic 

behavior given a sample of an individual's recent behavior.  
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Bouchard et al. (Bouchard, Giroux, & Bouzouane, 2006) have proposed a non-

quantitative logical approach to ADL recognition in a smart home, dedicated to 

Alzheimer‟s patients. Their formal framework for the recognition process is 

based on lattice theory and action description logic. Their framework reduces the 

uncertainty about the prediction of the observed patient‟s behavior, allowing the 

assistant agent to anticipate the opportunities for assistance. This is achieved by 

dynamically generating the future potentially incoherent intentions of the patient, 

which result from the symptoms of their cognitive impairments (disorientation, 

memory lapse, etc.). This approach offers an effective solution to actual 

recognition of an ADL in a smart home, in order to provide assistance to persons 

suffering from Alzheimer‟s disease. 

Rugnone et al. in (Rugnone, Poli, Vicario, Nugent, Tamburini, & Paggetti, 2007) 

focuses on the problem of automated recognition of sequences of events that 

may indicate critical conditions and unexpected behaviors requiring intervention 

and attention from caregivers. This work is based on a formal framework 

developed with temporal logic used for the specification of critical sequences of 

patterns and a behavior checking engine for automated recognition. 

One important limitation of logic-based approaches is their inability or inherent 

infeasibility to represent uncertainty. They don‟t have any mechanism for 

deciding whether one particular plan is more likely than another, as long as both 
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of them can be consistent enough to explain the actions observed. Moreover, 

they offer no ability of learning associated with logic based methods. 

C) Decision Tree 

          A decision tree is a decision support tool that uses a tree-

like graph or model of decisions and their possible consequences, 

including chance event outcomes, resource costs, and utility. Decision tree 

learning is one of the most widely used and practical methods for inductive 

inference. It is a method for approximating discrete-valued functions that is 

robust to noisy data and capable of learning disjunctive expressions. Decision 

Tree Learning algorithms include ID3, ASSISTANT, and C4.5. These decision 

tree learning methods search a completely expressive hypothesis space and thus 

avoid the difficulties of restricted hypothesis spaces. Their inductive bias is a 

preference for small trees over large trees. (Mitchell, 1997) 

Some researchers including Maurer et al. (Maurer, Smailagic, Siewiorek, & 

Deisher, 2006) and Bao and Intille (Bao & Intille, 2004) have employed decision 

trees to learn logical descriptions of the activities. One advantage of using 

decision trees is that they generate expressive models. Moreover it can handle 

noisy data and has the added advantage of relative transparency of which sensors 

inputs contribute to classification. However, decision trees should be used when 

target function is discrete-valued. Moreover, it is prone to overfitting. 
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D) Artificial Neural Networks 

          An artificial neural network (ANN) is a mathematical model that is inspired 

by the structure and/or functional aspects of biological neural networks. A neural 

network consists of an interconnected group of artificial neurons, and it 

processes information using a connectionist approach to computation. 

ANNs provide a general, practical method for learning real-valued, discrete-

valued, and vector-valued functions from examples. Algorithms such as back 

propagation use gradient descent to tune network parameters to best fit a training 

set of input-output pairs. ANN learning is robust to errors in the training data 

and has been successfully applied to problems such as interpreting visual scenes, 

speech recognition, and learning robot control strategies (Mitchell, 1997).   

Kiani et al. (Kiani, Snijders, & Gelsema, 1998) have used probabilistic neural 

networks to recognize basic ADLs such as sitting, walking, lying and so forth. 

The average recognition rate of the trained neural networks is 95%, which is a 

good classification of all presented cases of the daily life activities. An automatic 

misclassification of 5% resulted from certain activities being too short or the 

occurrence of activities that were not included in the training set. 

In another study (Rivera-Illingworth, Callaghan, & Hagras, 2005) Rivera et al. use 

a neural network agent based approach to recognize a few ADLs including eating, 

working on computer and sleeping.  
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One of the limitations of ANNs which has become the common criticism of this 

model is that it requires a large diversity of training for real-world operation. In 

addition, these models have high computation and time complexity due to the 

fact that the designer of NN systems will often need to simulate the transmission 

of signals through many of these connections and their associated neurons, which 

must often be matched with incredible amounts of CPU processing power and 

time. 

E) Dynamic Bayesian models 

          A dynamic Bayesian network is a Bayesian network that represents 

sequences of variables. These sequences are often time-series or sequences of 

symbols (for example, protein sequences).  

1) Hidden Markov Model 

This model is explained in more in detail in section 5.2.3. 

2) Conditional Random Fields (CRF) 

A CRF is a finite state model with un-normalized transition probabilities. CRFs 

assign a well-defined probability distribution over possible labeling, trained by 

maximum likelihood or MAP estimation (Lafferty, McCallum, & Pereira, 2001). 

Recently some researchers such as (Vail, Veloso, & Lafferty, 2007; Kasteren, 

Noulas, Englebienne, & Krose, 2008) have used CRF in activity recognition.  
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2.3 Activity Types 

2.3.1 Basic Activities 

          Activity recognition includes a wide range of activity types. One of the 

most common activity types in activity recognition research is basic activities. 

Basic activities consist of basic movements such as ambulation, sitting, laying 

down, shaking hands, riding and so forth. A considerable amount of research is 

dedicated to recognizing ambulatory movements (Bao & Intille, 2004; Lester, 

Choudhury, & Borriello, 2006). Wearable sensor is the most often used sensor 

for this purpose.  

2.3.2 Activities of Daily Living (ADL) 

          Activities of Daily Living (ADLs) is a term used in health care to refer to 

daily self-care activities within an individual's place of residence, in outdoor 

environments, or both. In this study we only look at indoor activities. Health 

professionals routinely refer to the ability or inability to perform ADLs as a 

measurement of the functional status of a person, particularly in regards to people 

with disabilities and older adults (Meghan, 2002).  

Different researchers have used different sets of activities for their studies. The 

most often used measure of functional ability is the Katz Activities of Daily 

Living Scale (Katz, Ford, Moskowitz, Jackson, & Jaffe, 1963). Katz gives a low 

level list of important daily activities: Feeding, Continence, Transferring, 



 

49 

Toileting, Dressing and Bathing. In activity recognition we need a more specific 

list. Some groups have defined their own set of ADLs such as B-ADL (Bayer)  

(Hindmarch, Lehfeld, de Jonge, & Erzigkeit, 1998), LCADL (London Chest) 

(Garrod, Bestall, Paul, Wedzicha, & Jones, 2000). In this study, instead of 

defining our new set of activities we try to look at ADLs that are most common 

in activity recognition literature and categorize them based on the technology 

needed for recognizing each activity.  

Basic ADLs consist of self-care tasks, including: (McDowell & Newell, 1996, 2nd 

edition)  

 Personal hygiene and grooming 

 Dressing and undressing 

 Meal preparation and feeding oneself 

 Functional transfers, e.g. Getting out of bed 

 Voluntarily controlling urinary and fecal discharge 

 Elimination 

 Ambulation (Walking without use of canes or crutches or using a 

wheelchair, should be able to safely maneuver stairs.) 

A more complete list of ADLs can be found in Appendix A. (Tapia E. M., 2008 ; 

Logan, Healey, Philipose, Tapia, & Intille, 2007) 
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2.4 Computational Challenges 

          In addition to sensing challenges which are discussed above, activity 

recognition involves some computational challenges as well. In the following 

subsections we discuss some of these challenges. 

2.4.1 Sequential Order of Tasks in Complex Activities 

          Sequential order of tasks in complex activities means different possible 

order of tasks composing one particular activity makes the activity difficult to be 

recognized. When cooking a cup of noodle soap, for example, one might boil the 

water then pour noodles and at the end pour salt and pepper, while another 

individual might boil the water with salt and pepper, and then pour noodles, and 

another one might even boil the water in the microwave instead of using a 

conventional burner. Thus, modeling of the sequence of tasks in these uncertain 

scenarios is an interesting problem.  

Furthermore, one might perform more than one activity concurrently. This 

makes the activity recognition problem even more challenging, since both 

activities might even share common tasks. 

2.4.2 False Starts  

          A person may start an activity, and then suddenly begin a new task because 

something more important has caught his attention or because he simply forgot 

about the original task (Tapia E. M., 2008 ). In this case, correct start of the 
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activity is not clear and start of the first activity does not have an end which is 

misleading for classification algorithm. 

2.4.3 Lack of Sufficient Real-world Training Data 

          This is another general problem in activity recognition which might not 

look very important at first, but since most current activity recognition systems 

use supervised learning techniques, they require sufficient training data. The 

difficulty of providing training data consists of but not limited to finding 

participants, process of collecting, cleaning and annotating the data. Therefore 

some studies have used mock scenarios for collecting data (Krishnan N. K., 

2010), some have used sample generating techniques and some try to come up 

with unsupervised techniques that don‟t need training data. In contrast, this study 

has used real-world annotated data in all of the experiments.  

2.4.4 Occurrence of Irrelevant Actions  

          As described earlier, complex activities consist of sequences of actions. In 

real scenarios we have irrelevant actions along with a large variety of other tasks, 

which makes recognizing tasks at this level very hard. As an example, while 

executing the tasks in the activity making a cup of tea, the individual might look 

at different cupboards to find sugar or turn down the TV. This does not 

constitute interleaved activities, because turning down the TV is just an irrelevant 

action in making tea and it should not be considered as a complete activity. This 
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problem is a particularly complex aspect of activity recognition and is still an 

open research challenge. 
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CHAPTER THREE 

3. CASAS TESTBED 

 

          This chapter provides a detailed representation of the CASAS smart home 

technology and the conditions under which the study data was gathered. The 

technology behind each research study has an impact on the results, therefore it 

needs to be taken into consideration along with the results. As the main purpose 

of this thesis is to compare different sensing technologies in activity recognition, 

we devote a chapter to describe the sensing platform that we use for our study.  

A collection of hardware and software tools is used in the CASAS project for the 

implementation of a smart home. The entire home is devoted to the study except 

one control room which is dedicated to experimenter use. That room is used in 

some studies where experimenters need to monitor participants throughout the 

study; they can look at the live video of participants and give them instructions 

through the microphone.  

We have categorized CASAS sensing technology into three main classes. These 

sensors are listed in detail in Section 3.1. In addition, important issues related to 

their supporting infrastructure are provided. 
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The software built for the CASAS Technology Platform (CTP) is an agent-based 

system. CASAS Lightweight Middleware (CLM) has been designed to provide the 

communication infrastructure for sensors and different software tools. CLM is 

described in detail in section 3.2. 

Section 3.3 talks about data representation and the database-backed architecture 

which is used for long term storage of the data gathered by the sensor platform. 

3.1 CASAS Sensing Technology 

          The goal of CASAS is to be simple, reliable, energy efficient and user 

friendly. Many of the component devices are commercial products integrated into 

a variety of data buses to be read by the server. Data events from different 

sensors pass through middleware where they are processed and stored. We have 

tried to install sensors in a way that participants become comfortable with the 

new technology in their home after a few weeks. 

Most sensors are attached to a Dallas 1-wire bus™. This bus helps in fast transfer 

of small data packets along a number of devices on a common serial bus. A 

custom board was made to attach the sensors to the 1-wire bus. This board is 

used in the PIR motion sensors, temperature sensors and door sensors of all of 

the CASAS testbeds. This board allows easier connection of different devices 

without serious modification. All sensors that are connected to the server and use 

the 1-wire bus share a single software agent which reports their activities. Some 
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of the other sensors use RS232 (serial), USB (Universal Serial Bus) and power line 

signal injection to communicate with the server. Wireless sensors use ZigBee 

protocol to communicate with the server. However, each has a separate agent 

that reports events and provides an interface to communicate with them. 

3.1.1 Environmental Sensors 

Passive Infrared Motion Detector 

          The PIR Motion Detector used by the CTP is a Visionic™ model K-940. 

This device is designed for general purpose home security installations and 

usually is installed on the wall for a human-height field of view. In CTP, these 

sensors are used for two purposes: as area sensors or downward facing sensors.  

The PIR Area sensors are usually positioned in a way that only views one room. 

They are often used for occupation recognition in a room. Thus, the sensor is 

triggered when someone enters the room but the exact position of them can not 

be realized. A stock area sensor is shown in Figure 9.  
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Figure 9. PIR sensor used in CASAS. 

In order to obtain more detailed information about the position of residents, 

these sensors need to be attached to ceiling facing downward. As a result, it can 

only view the floor below it and more locality is achieved. By using this feature it 

can recognize if more than one person entered the room or where the person is 

located at each moment. Sensors can be modified for more or less focused view 

of the space. 

Recently one wired PIR sensors have been replaced by Control4 / CardAccess 

motion detectors.  

Control4™ Power Control System 
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          Control4™ is used as wireless power control system in CTP. Control4™ 

uses ZigBee-based solutions for communication with wireless devices. 

Ambient Temperature Sensor 

          For measuring the temperature in a room 1-wire temperature sensor 

including Dallas DS18S20 chip Dallas DS18S20 chip (Figure 10) has been used. 

This sensor can sense the surrounding temperature to within ½° C. We have 

installed them on the ceilings of rooms in the smart home. These sensor can 

recognize stove burner usage if it is installed above the stove. Since experiments 

were conducted in different times of year and day, we did not use data from 

Temperature sensors in current study. 

 

Figure 10. A CTP Ambient Temperature Sensor. 
Figure has been adapted from Crandall‟s work 
(Crandall, 2011) 
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Magnetic Door Sensors 

          Magnetic door sensors are one of the common and inexpensive home 

security items. It works with a simple magnet-driven reed switch, whenever the 

magnet moves away from the reed switch, it closes and the state on the 1-wire 

chip is changed. After sending this change to the server, server sends an 

“OPEN” event out over the middleware for processing and storage. When the 

magnet goes back into place, a “CLOSED” event is created. This sensor has been 

place on doors such as bedrooms, kitchen cabinets and refrigerators. Figure 11 

illustrates examples of magnetic door sensor usage in Kyoto smart home.  More 

detailed information about this sensor is provided in section 2.2.1. 

 

Figure 11. Illustrates magnetic door sensors in 
CASAS smart home on a room door in left and 

cupboard door in right. 
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Item Presence Sensors 

           Item presence sensor (Figure 12) detects the presence of some items 

throughout the home. When the item is placed or removed from the plate, the 

switch is depressed and an event created. These item sensors are used for items 

that we cannot put object sensors on, such as glass and some medication bottles.  

 

 
Figure 12. A CTP Item Sensor in top (Figure has been adapted from Crandall‟s 

work (Crandall, 2011)). Use of CTP in CASAS kitchen cupboard in bottom. 
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Stove Burner Power Meter 

          Stove burner power meter is designed to measure the use of the stove 

burner. The resulting voltage measurements are interpreted to give both duration 

and power setting when the residents are cooking. We did not use data from this 

sensor in current study. 

Water Flow Sensor 

          In order to measure the use of the sink in the Kyoto (where the current 

study has been conducted) testbed's kitchen, a pair of water flow sensors were 

installed. These commercial products from Lake Monitors™, pictured in Figure 

13, were placed on both hot and cold inflow pipes to the sink. Measuring water 

flow in smart home helps in detecting activities that need water usage. We did not 

use Water Flow Sensor in current study. 

 

Figure 13. An example of the CTP water flow 
sensor.  
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OneMeter Power Metering 

          The OneMeter™ device monitors an inductive coil to determine the 

current wattage and cumulative kWh passed through a wire. In CTP it is installed 

in a way that lets the computer to poll for the current power status.  

3.2 CASAS Middleware 

          CTP is an agent-based pattern and agents are communicating with each 

other through message passing in a distributed network. The CTP middleware is 

documented in depth in Kusznir's Master Thesis (Kusznir, 2009) under the title 

CLM as a Smart Home Middleware” where CLM stands for CASAS Lightweight 

Middleware".  

The CTP middleware uses the XMPP protocol (Saint-Andre, 2004) as the 

messaging and presence layer. This means CTP can use any full featured XMPP 

server to manage the interconnection of agents and passing of messages. The 

agents implemented in the CLM system use XML formatted messages to 

communicate with one another. 

3.2.1 Distributed Clocks and Event Timestamps 

          Synchronizing clocks in distributed system has always been an issue in 

message passing systems. CASAS has handled this problem with using the clock 

of the main server as the authoritative source of time. As events arrive at the 
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Manager agent, it stamps the current time on the event before passing it along for 

recording and processing.  

3.3 CASAS Database and Data Representation 

          Data is first gathered from the sensor platform which is discussed in 

Section 3.1 then it is passed through the Middleware explained in Section 3.2. 

Output of CLM is in a standard format and is stored in a database. All events 

passed by the CTP from the sensor platform are stored in a database. These data 

are stored for future data mining and history building tools; it is also used for 

monitoring correct operation of testbeds. While the current implementation is an 

SQL database, any kind of structured repository can be used. 

3.4 CASAS Testbeds 

          There have been total of 6 CASAS testbeds that have been implemented 

and deployed. The CPT infrastructure has been installed and tested in each of 

these testbeds for at least several months. A variety of studies such as detecting 

ADLs, detecting the number of residents, detecting the steps of an activity and 

providing resident activity prompting to aid older adults with dementia issues 

have been conducted using these tested. Subsets of the data gathered from these 

spaces are available from the CASAS shared data set web site (CASAS shared 

smart home datasets repository, 2011). We have only used the Kyoto testbed as 

source of data in this thesis. 
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3.4.1 Kyoto testbed 

          Kyoto (also known as the “smart apartment”) is the primary research 

testbed for CASAS which is located on WSU campus. It is a three bedroom 

apartment as part of the WSU housing system. Data used in this thesis was 

gathered from this testbed. Layout of the apartment can be seen in Figure 14. 

Each resident has their own room with a bed, desk and closet. There is a shared 

bathroom, living room and kitchen. This apartment looks like a typical homes 

thus, it makes the results from the research performed here more applicable than 

partial smart home implementations or work done with specialized facilities. 

 

Figure 14. Labeled room map of Kyoto testbed 
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Kyoto has been data source for various types of studies such as Chen‟s study on 

associating of activities with energy consumption (Chen, Das, & Cook, 2010), 

recognition of ADLs with environmental sensors (Singla, Cook, & Schmitter-

Edgecombe, 2008). 

The Kyoto motion detectors are installed throughout the apartment except in the 

control room upstairs which is designated for experimenters. There is only one 

single area motion sensor installed in the room to monitor the occupancy of the 

room. Almost every door in the apartment has a magnetic closure sensor. Some 

of the cabinets in the kitchen, the microwave and the refrigerator are monitored 

in this manner. The kitchen sink has water flow sensors to monitor water usage.  

Additionally there is a stove burner sensor, a water flow sensor, a number of item 

presence sensors, and a OneMeter power meter gathering data in the apartment. 

The Kyoso sensor layout is presented in Figure 15. In this figure, „M‟ represents 

motion sensor, „D‟ represents magnetic door sensor, “I‟ represents item sensor. 

This layout doesn‟t show shake sensors which are used in the kitchen. Figure 36 

illustrates kitchen layout with object shake sensor locations.  

Kyoto residents can be classified in to two categories: full time and transient. Full 

time residents are students who live there but they are not part of CASAS study.  



 

65 

Transient residents are people who visit the apartment during the day for 

different purposes. These visitors may be performing maintenance, conducting 

different experiments, or participating in experiments. Based on the needs of each 

study sensor data generated by these individuals can be filtered out. 

 

Figure 15. Sensor layout of Kyoto testbed 

3.4 CASAS PyViz visualization tool 

          PyViz visualization tool (Thomas & Crandall, 2011) visualizes data steam. 

It is used in data annotation purposes. Annotators are observing events as they 

are replayed using this tool. They can see events at the map of the home, by using 
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their common sense they annotate data samples. They labeled the start and stop 

event of each activity. Some features of PyViz can be seen at Figure 16 and 

Figure 17. 

 

Figure 16. Kyoto layout with PyViz visualizer.  
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Figure 17. Graphically rendered SVG configuration 
file for Kyoto smart apartment. Figure has been 
adapted from (Thomas & Crandall, 2011)  
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CHAPTER FOUR 

4. STUDY METHODOLOGY  

 

          In this chapter we present our approach to the problem of activity 

recognition. First, the sensor selection process and its challenges are discussed; 

lastly, the sensors used in this study are introduced. 

4.1 Study Highlights 

          In addition to integrating different sensor types into one system and 

comparing their positive and negative points in one study, another factor which 

differentiates this work form previous studies is using a variety of everyday 

activities for a diverse sample population under conditions akin to those found in 

real-world settings.  

A large number of previous works use data collected in lab or from one or few 

participants and often the subjects are the researchers themselves (Ravi, 

Dandekar, Mysore, & Littman, 2005; Srinivasan, Chen, & Cook, 2010). It is 

important to train and test activity recognition systems on data collected under 

real circumstances, because data collected in a laboratory usually has restricted or 

simplified activity patterns. However, little work has been done to validate the 

idea under real-world circumstances.  
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Moreover, research using naturalistic data collected from multiple subjects has 

focused on recognition of a limited subset of a few everyday activities consisting 

largely of ambulatory motions and basic postures such as sitting and standing (e.g. 

(Krishnan & Panchanathan, 2008; Lester, Choudhury, & Borriello, 2006)).  

Foerster, et al. (Foerster, Smeja, & Fahrenberg, 1999) demonstrates a 95.8% 

recognition rate for data collected in the laboratory but recognition rates dropped 

to 66.7% for data collected outside the laboratory in naturalistic settings.  

Although our study is not using data gathered in participants‟ real homes, but 

since experiments are conducted in a real home it can be considered as a realistic 

but controlled experimental setup. In addition, our participants have not been 

told what steps should an activity consist of and orders of steps were not 

specified.  

There has been a considerable amount of research on algorithms for activity 

recognition in smart homes. We believe the performance of these algorithms 

depends heavily on the data and sensing technologies that are employed. In this 

study we do not intend to present a new algorithm, Instead, we focus on a 

comparison between different sensing technologies and their relation to 

recognizable activities.  
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One important point that this study tries to make is that no one can provide a 

unique list of sensor types that performs best for general activity recognition. A 

variety of factors including activity types, number and placement of sensors, 

sensor feasibility and purpose of the study affect the results and need to be taken 

into consideration when choosing a proper sensor type. 

4.2 Sensor Selection 

         Adding new sensors to any system introduces challenges for the system 

infrastructure. In our case, we need to add wearable and object sensors to current 

CASAS sensing technology.  

4.2.1 Challenges 

          (Wilson, 2005) has defined the following characteristics for sensor 

selection:  

 Should fit into familiar forms, be inexpensive, preferably available 

off-the shelf and easy to install. 

 Sensor data should be private and should not reveal sensitive 

information, especially identity.  

 Arguably equally important sensors should not be perceived as 

invasive. 
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 Wireless sensors can be mounted to any surface, while wired sensors 

may require running cable to a central location.  

 Processing sensor data should require minimal computational 

resources (e.g., a desktop computer). Sensors should be low-

maintenance, easy to replace and maintain. Sensors will be neglected 

and should be robust to damage. 

Finally, sensors should be low-power, requiring no external power or able to run 

as long as possible on batteries. As a last resort the device may need to be 

plugged in or powered by low voltage wiring. 

One of the sensors we need to add to CASAS platform is wearable sensor that 

can assist us in recognizing ADLs. For this purpose, first we try to find a proper 

wearable sensor with the following features: 

 Accelerometer with 6 degrees of freedom. There are many other 

wearable sensors which are being used in health care for monitoring 

respiration (Paradiso, Loriga, & Taccini, 2005), heart rate or blood oxygen 

levels. However, accelerometers are the best wearable sensors that can 

help us in recognizing day-to-day activities. An accelerometer is a sensor 

that measures the linear acceleration that is induced by gravity or by the 

movement of the sensor. It is sensitive to shock, orientation, and 

vibrations. There are different kinds of accelerometers based on type of 
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construction and sensitivity range. The most informative ones have a gyro 

along with an accelerometer which provide us with 6 degrees of freedom. 

 Wireless. Being wireless was an important factor for our system, since 

wired wearable sensors cannot be used in real home experiments. 

Performing ADLs requires the individual to move between different parts 

of the house, thus wearing wired sensors is not practical in this case. 

 Lightweight. The comfort of participants is one of the most important 

factors to be considered when choosing appropriate technology. A big 

and heavy wearable sensor is likely to make participants unsatisfied, 

especially older adults. 

By using existing, well tested off the shelf commercial products, the robustness, 

energy efficiency and profile of the system are often improved. Commercial 

products are also often packaged well, so their visibility profile after being 

installed is lower and the residents are less likely to notice the system after they 

become accustomed to it. In our case, finding a commercially available wearable 

accelerometer could solve many of our practical problems such as finding a way 

to wear the sensor on different parts of body, easily transmitting data to a PC and 

saving it in a familiar format.  
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4.2.2 Selected Sensors 

          We had to find a practical wearable sensor to add to CASAS sensing 

platform. As a result, we did one trial experiment with our first selected sensor 

(Sparkfun), after realizing its limitations we decided to replace it with another 

sensor (Shimmer). Ultimately, Shimmer sensor has been integrated into CTP. In 

this section we provide more detailed discussion on our sensor selection process 

for this study.  

A. Sparkfun Accelerometer 

          The first sensor that we tried is an atomic IMU 6 Degree of freedom - 

XBee Ready chip marketed by Sparkfun Electronics (Figure 18) 

1) Accelerometer Overview 

This sensor is designed to give good performance at a low price. The unit can run 

as a hard-wired UART Interface (0-3V, 115200bps), or optionally with an XBee 

RF module, and is powered from a single LiPo (Lithium Polymer) battery. The 

processor is an Atmel ATMega328 running at 10MGz with 6 dedicated 10-bit 

ADC channels reading the sensors.  

The 6-DOF Atomic uses these sensors: 

 1 x Free scale MMA7260Q TM triple-axis accelerometer, settable to 1.5g, 

2g, 4g or 6g sensitivity 
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 3 x ST Microelectronics LISY300AL TM single-axis, 300°/s gyros 

All sensor readings are available through any terminal program in either ASCII or 

binary format, or with the 6DOF Atomic IMU Mixer demo application. 

More features are as follows: 

 Input voltage is 3.4 V to 10 V DC 

 Current Consumption: 24mA (75mA with X-bee)  

 Dimensions: 1.85 x 1.45 x 0.975 inches (47 x 37 25 mm) 

 

Figure 18. Accelerometer with 6 degrees of 
freedom. 

2) Battery 

Since the accelerometer is wireless we need a battery along with it (Figure 19). We 

use Polymer Lithium Ion Battery - 2000mAh which is a very slim, extremely light 

weight battery based on the new Polymer Lithium Ion chemistry. This is the 

highest energy density currently in production. Each cell outputs a nominal 3.7V 
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at 1000mAh. And comes terminated with a standard 2-pin JST connector - 2mm 

spacing between pins.  

Features: 

 2C continuous discharge 

 Excellent long-term self-discharge rates (<8% per month) 

 Robust power source under extreme conditions (-25 to 60C) 

 Dimensions: 2.09 x 1.3 x 0.225" (53 x 33 x 5.7 mm) 

 Weight: 22g (0.77oz) 

 

        

Figure 19. Polymer Lithium Ion Battery and its 
dimensions 

3) Antenna 

Another type of device that is used in this experiment is an XBee Pro 60mW 

Chip Antenna for wireless transmission of data from accelerometer to another 

XBee Pro 60mW Chip Antenna which is connected to a laptop USB. According 
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to Sparkfun's website, this module allows a very reliable and simple 

communication between devices with serial port like microcontrollers, systems 

and computers as shown in Figure 20. Point to point and multi-point networks 

are supported. 

 

Figure 20. Digi XBee Pro 60mW chip antenna. 

Features: 

 3.3V @ 215mA 

 250kbps Max data rate 

 60mW output (+18dBm) 

 1 mile (1500m) range 

 Built-in antenna 

 Fully FCC certified 

 6 10-bit ADC input pins 

 8 digital IO pins 

 128-bit encryption 
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 Local or over-air configuration 

 AT or API command set 

Since it is just a chip and not placed in a predesigned box we couldn‟t fit it in a 

normal armband. In order to find a proper way to wear the sensor we faced a few 

challenges. First, one problem is the size of the battery which is relatively big. 

Second, the ON/OFF button is very tiny in the middle of the chip, thus it is not 

possible to place a box around it.  

As a result, we wrapped the sensor and the battery with a bandage around the 

participant‟s arm. We performed one experiment with this sensor, which is 

explained in more detail in section 5.1. In that experiment we have one 

participant performing four activities of daily living. 

4. Sparkfun Sensor Problems 

During this experiment we faced some problems with the Sparkfun 

accelerometer.  

 First of all, using it as a wearable sensor was not an easy task. 

Wrapping it with a bandage was giving us acceptable results but 

was not a practical solution for long term use. 

 Second, since it is a chip which does not have any protection 

around it, data sometimes becomes noisy, especially when sensor 

is touched. 
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 Third, the collected data does not include a time stamp, therefore 

it was not a good option for our final intension which was 

integrating it into the CASAS sensor technology. 

B. Shimmer Accelerometer 

          Our second approach is using Shimmer sensor. Shimmer is a low power 

wireless sensor platform that provides much of the functionality needed for 

wireless sensing. Designed for wearable sensing applications, the platform has an 

on-board microcontroller, wireless communication via Bluetooth or 802.15.4 low 

power radio, and the option of local storage to a micro SD card. The unit also has 

an integrated accelerometer for motion sensing, activity monitoring and inertia 

measurement applications. 

The Shimmer unit acts as a baseboard for the full range of Shimmer wireless 

sensor modules. Shimmer can be connected to any one of a range of sensors such 

as Gyro, Magnetometer, ECG, EMG, GSR, GPS/Temperature, or Strain Gauge 

modules, whilst maintaining its small, lightweight, and wearable form factor. In 

this experiment we have used a gyro connected to shimmer units in order to 

monitor the Euler angles introduced by Leonhard Euler to describe 

the orientation of a rigid body. To describe such an orientation in 3-dimensional 

Euclidean space three parameters are required. Euler angles also represent three 

composed rotations that move a reference frame to a given referred frame. These 

three parameters are yaw, pitch, and roll. 
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Hardware Features:  

 Processing: MSP430 microcontroller (8mHZ, 16 Bit) 

 Communication: Bluetooth – RN-42  , 802.15.4 radio - TI 

CC2420 

 Storage: Integrated 2GB microSD card slot 

 Battery: 450mAh rechargeable Li-ion 

Integrated Sensors: 

 3 Axis accelerometer – Freescale MMA7361 

 Tilt/vibration switch 

The shimmer sensor is designed for wearable and remote sensing applications. 

The shimmer unit is designed to be highly flexible and adaptable, easily 

integrating into existing systems and technologies. Shimmers are frequently used 

in activity monitoring, sport science, and intelligent building applications to name 

but a few applications. Due to its flexibility, the Shimmer platform is generally 

application agnostic.  

 Benefits: 

Highly Configurable. A shimmer sensor can be programmed to meet any 

specific application, with configurable sensitivity, sampling rate, transmission rate 

and frequency, communication protocols, and packet formats. We programmed it 

in order to integrate it into the CASAS technology; so each sensor sends a packet 
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to our existing server. The middleware will assign a timestamp to the packet and 

store it in the database. As a result, all data from different sensor types in CASAS 

are stored in one database with a synchronized timestamp. 

Compatibility. Since Shimmer sensors use ZigBee protocol, it easily integrates 

and interacts with existing systems and technologies in CASAS smart home.  

No Proprietary Software. As opposed to some commercial products that only 

provide processed data to users, with Shimmer we have full access to all raw 

sensed data to interpret data specific to any application, product or service 

requirements 

Supporting Application. Supporting developer applications including labVIEW, 

ShimmerConnect, and a full range of TinyOS firmware. 

Advantages over Sparkfun’s sensors: 

Size. Battery is embedded into the box. (Small size). (Figure 21) 

Weight. Shimmer is Light Weight (baseboard and battery 15g; with enclosure 

22g) 

Style. Shimmer is stylish, functional enclosure with wearable straps available. 
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Figure 21. Shimmer accelerometer and its 
dimensions 

C. Shimmer Gyro 

          The Shimmer Gyro (Figure 22) provides researchers with 3-axis angular 

rate sensing (gyroscopes) and additional features for enhanced operation and 

accuracy. Utilizing two integrated dual-axis angular rate gyroscopes, the Shimmer 

Gyro Board can perform complex motion sensing applications. The Gyro Board 

uses next-generation MEMs technology that offers higher performance, lower 

power and a rigid board implementation to ensure a perpendicular Z-axis. The 

Gyro Board is connected to the Shimmer main board via an internal connector 

pin, and is contained within the Shimmer enclosure. With fixed reference output, 

the Gyro Board runs off a secondary LDO for improved power-supply noise 

rejection. 
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The Shimmer Gyro Board has an enhanced user interface with a programmable 

button for application control (such as sampling start/stop, RF transmission 

start/stop, data marker), a programmable indicator, and a pinhole reset.  

 

Figure 22. Shimmer gyro with shimmer 
accelerometer.  
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CHAPTER FIVE  

5. EXPERIMENTAL RESULTS 

          In this chapter we present the setup and results of experiments performed 

in this study. We collected data from two experiments. The first experiment 

utilizes the Sparkfun accelerometer for four activities, where the goal is to choose 

the proper accelerometer to add to CTP. After realizing Sparkfun‟s limitations, 

our main data collection is performed with Shimmer sensor. It utilizes shimmer 

sensors together with all of the current sensors in CASAS Kyoto smart home and 

wearable sensors for six common ADLs. The goal is to compare these different 

technologies for activity recognition. All experiments and their results are detailed 

in the following sections. 

5.1. Activity Recognition with Sparkfun Accelerometer 

          In this experiment one female participant age 24 performed four common 

ADLs: Eating, Reading, Hand Washing, and Sweeping. For Eating, we asked the 

participant to eat a bowl of oatmeal. Washing hands involved rubbing soap 

between two hands and rinse with water. For Reading, the participant was asked to 

read a magazine, which consists of repeatedly turning page after a few seconds of 

staying on one page. In real life the magazine could be replaced by a cookbook, 

telephone book, etc. Activity Sweeping was performed as sweeping the entire room 
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with a broom. Each activity was repeated 10 times by the same participant. As a 

result, the total number of data samples is 40. Accelerometer frequency was 10 

Hz with 6 output values: X, Y, Z, Pitch, Roll, Yaw. First three are acceleration in 

three dimensions, the rest are the Euler angles. 

5.1.1. Problems with Pre-processing the Data 

          One of the problems we faced in working with this chip was having noisy 

and inconsistent data in some cases. In particular, because the chip does not have 

any protection layer, it is very sensitive to touch and its data becomes noisy very 

easily. As a result, the data has to be checked line by line and noisy data lines are 

ignored. It should be noted that because of the high sample frequency, ignoring 

these lines does not affect the data. 

5.1.2. Mean Feature Approach 

A) Trial One 

          In the first trial we generated the mean value for each column (so the new 

X is the mean of all X values of one activity run). In order to pre-process the data 

we need to transform total 40 sample files in to one input data file. Each line of 

this new file corresponds to one original output file which is one run of a 

particular activity.  



 

85 

Each data point is described by 7 attributes: mean of x, mean of y, mean of z, 

mean of roll, mean of pitch, mean of yaw and activity (the target class value). 

Different machine learning algorithms have been tested on the data and the best 

three were chosen.  

B) Trial Two 

          By introducing a sliding window, we divide output files into equal-length 

segments. (For example, by dividing each output file into 5 equal segments, all 

activities are divided into 5 segments). In this way we are adding more features to 

our data and instead of having one mean value for each axis (x, y, z, roll, pitch, 

yaw), we will have n mean values. (n is the number of windows). This approach 

helped us to use the information in sequence of data and as a result boost the 

accuracy. Different segment numbers can be tried in the future. Results of these 

two trials are shown in Figure 23. Leave-one-out cross-validation has been used 

in these two trails.  
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Figure 23. Comparison of results with and without 
windows. 

5.1.3. Pattern Discovery Approach 

          In this section, we present a model which applies pattern discovery 

techniques to wearable sensor data in order to recognize daily activities. This 

model transforms raw accelerometer data into string sequences, and then uses 

suffix trees to generate structural patterns of different activities. This approach 

has been evaluated using data described in the previous section. Finally, we 

discuss the performance of the technique along with its advantages over other 

methods. 
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A) Background 

          In Bioinformatics, researchers have come up with many algorithms for 

pattern discovery in nucleotide sequences. In Computer Science we deal with 

time series data from different sensors. Converting it to symbolic data provides 

us with the opportunity to use algorithms from the text processing and 

bioinformatics communities. 

In this approach, we demonstrate the use of a pattern mining structure called 

Suffix Tree. We use Suffix Tree as an activity representation to efficiently 

recognize the structure of activities (Gusfield, 1997) by analyzing their constituent 

event-subsequences over multiple temporal scales, which has already been widely 

applied into text indexing (Grossi & Vitter, 2000) and genome analysis 

(Abouelhoda, Kurtz, & Ohlebusch, 2002). Chen et al. have used suffix tree for 

monitoring, analyzing and predicting energy usage in CASAS smart home (Chen 

& Cook, 2011). Unlike other mining methods, which are exponential in their 

complexity, a suffix tree can be constructed in linear time O(n) for a data 

sequence of length n, and also spend O(m) time to search for a subsequence of 

length m in a sequence of length n, regardless of the length of n. 

Suffix trees have been used in an unsupervised manner in the context of smart 

environments and assistive living. Minnen et al (Minnen, Starner, Essa, & Isbell, 

2007) use Suffix trees for discovering frequently occurring motifs in the sensor 
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streams and then apply a Hidden Markov Model (HMM) for finding all the 

occurrences of the motifs in the original time series. They validate their model 

using data from wrist-mounted sensor and were able to discover characteristic 

actions in dumbbell exercises with an overall accuracy of 86.7%. Suffix Trees 

have also been used in unsupervised activity analysis with environmental sensor 

data from a kitchen environment (Hamid, Maddi, Bobick, & Essa, 2007; Hamid, 

Maddi, Bobick, & Essa, 2006). To the best of our knowledge, no study on 

supervised learning in activity recognition has used Suffix tree. And no study with 

wearable sensors has used motif discovery methods for recognizing complex 

activities like ADLs. 

 

Figure 24. Main components of proposed model 
for recognizing activities from raw sensor data. 
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B) Model Description 

          Our model consists of 3 components that are shown in Figure 24, namely: 

sensor data collection, sensor data transformation, pattern database creation and 

activity similarity detection.  

Sensor Data Transformation 

In this module, data goes through binning and suffix tree generation phases. 

Here, the purpose of binning is to discretize continuous raw sensor data. Data 

values that fall in a given small interval, a bin, are replaced by a value 

representative of that interval, resulting in a sequence of symbols. This 

decentralization is done on each axis separately. The next step is to generate a 

Suffix tree for each sequence. After going through the Sensor Data 

Transformation component, we have 6 suffix trees for each sample representing 

the 6 dimensions of the data. Next, patterns are derived from each suffix tree and 

training samples are stored in Pattern Database component. This life cycle of data 

is shown in Figure 25. 

Activity Similarity Detection 

In this component test data is compared with samples from the Pattern Database 

to compute the pattern similarities. The activity that is more similar to test sample 
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is chosen as the test sample predicted label. A more detailed description of the 

proposed model and its components are presented in the following subsections. 

 

Figure 25. Preprocessing of data 

Sensor Data Transformation 

BINNING METHOD  

The input data collected by the wearable accelerometer is a time series stream of 

sensor events, which are composed of six different features (x, y, z, pitch, yaw, 

Roll) as were described in previous section. 

We define the wearable sensor sequence of n sensor events 

                 , where                                . To address 

the goal of mining sequence data, we discretize the wearable numerical values 
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using equal width binning (Liu, Hussain, Tan, & Dash, 2002) which has been 

used to preprocess continuous-valued attributes by creating a specified number of 

bins, or numeric ranges. 

For equal width binning, we define      as the maximal value of   and      as 

the minimal value of   . The number of bins is defined as  , which is assigned by 

the user and the interval of the bin I is defined as follows: 

  
         

 
                             (1) 

The continuous range of a feature is evenly divided into equal-width intervals   

and each interval represents a bin.  

 

Figure 26. Transform sensor numerical data into 
character symbol (k=5, V is an accelerometer data) 

We define alphabet              that represents the set of sensor pattern 

symbols.     is equal to the number of the bins . Figure 26 depicts how an 

accelerometer data is transformed into a character symbol using equal width 

binning (   ). As shown in the graph, we can transform wearable sensor 
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events                 > to six different string sequences     

               over the alphabet   . 

 SUFFIX TREE GENERATOR  

Let    denote a string over the alphabet  . Let      be a unique termination 

character, and       be the string resulting from appending  to   . Let 

      and                         be the suffix of  starting at     

position. The suffix tree of  is a compacted trie of all suffixes of string S over 

the alphabet  .  

 

Figure 27. A Suffix Tree defined on a wearable 
sensor sequence S can represent every subsequence 
in S with at most 2m nodes where m is the length 

of S. 

Traditional suffix tree construction algorithm starts from the root and follows the 

unique path matching characters in       one by one until no more matches are 

possible. If the traversal does not end at an internal node, it creates an internal 

node. The running time of this algorithm is proportional to              . 
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The total running time of the algorithm is                 
   . In order 

to achieve      running time, we use McCreight‟s algorithm (McCreight, 1976) 

to construct suffix tree, which uses suffix links to speed up the insertion of a new 

suffix. 

The figurative illustration of the transformation of a sensor sequence into its 

equivalent Suffix Tree is shown in Figure 27. No two edges of Suffix Trees begin 

with the same symbol, thus every unique subsequence in S, starting from the root 

node can be generated by traversing through the suffix tree. 

 Pattern  Database 

After generating suffix trees for each sample, patterns are recognized from them. 

Patterns of training set are stored in a database called Pattern Database. Each 

training sample in Pattern Database consists of a list of patterns and their 

frequencies for each axis (Figure 28). New training samples can be added to the 

database at any time. 
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Figure 28. A training sample ready to be stored in 
Pattern Database 

Activity Similarity Detection 

In the Activity Similarity Detection component, a test sample is compared against 

all activities and the most similar activity to the test sample gets chosen as its 

predicted label. This comparison consists of 4 steps that are explained below.  

The first step is to make clusters from samples with the same activity labels. 

Thus, each cluster represents an activity. For two samples q and r, we define their 

distance D(q,r) as in (2). It measures the distance between two samples according 

to similarity in their patterns.  

For two data samples q and r, let Pq and Pr denote sets of their patterns 

respectively, and xi be the ith pattern. Let f(xi | Pq) and f(xi | Pr) denote the 

frequency of pattern xi in q and r respectively. Then we define D(q, r) as follows: 
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                                                                 (2) 

For each activity (cluster) A, the average distance from test sample t is calculated 

using (3). Here K is the count of instances in that cluster (i.e. frequency of 

instances with activity label A); and sA is a training sample with label A. Then the 

distance from activity (DFA) A for test data t will be as follows: 

           
       

                                                    (3) 

Finally the activity that has the least DFA from test data will be chosen as 

predicted label for that sample. Thus, predicted label (PLabel) for test data t will 

be defined as follow: 

                                                            (4) 

3) Results 

Leave-one-out testing is commonly used while experimenting with very small 

datasets (Eftestl, 2010). Figure 29 shows the accuracy of five different algorithms 

we used for this comparative study. We have used these algorithms since they are  
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Figure 29. Activity recognition accuracy over 
different models. 

commonly used in activity recognition studies. The models we compare are: 

Multilayer Perceptron (MLP) (Frank, 1961), C4.5 (Quinlan, 1993), Decision Table 

(Fisher, 1966) and Hidden Markov Model (HMM) (Rabiner, 1989).   

For the first three algorithms, we represent the data using six features (         

                               ). Each of these values represents the mean of the corresponding 

value over a fixed data collection time period. These features are commonly 

employed for activity recognition with wearable sensors 

Some methods use the raw data directly, thus they consider all information 

hidden in data. We tried two approaches for this group: The first one is our 

proposed method, which uses pattern extraction and the second one is a hidden 
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Markov model, which is a probabilistic approach for modeling activities. As 

illustrated in Figure 29, both these methods from second group have achieved 

higher accuracy compared to the first group of algorithms. The proposed method 

and the HMM both achieved 97.5% accuracy.  

Although our approach did not offer a significant accuracy advantage over 

HMMs, we believe our model has the advantage of not requiring any complex 

learning process. Time complexity of our model is         , where n is the 

length of each sequence. However, for the HMM, time complexity is     

     , where T is the number of events and Y is the number of activities.  

Figure 30 graphs the accuracy of these models for each activity. It can be seen 

that Washing hands was the easiest activity to be recognized by all five models and 

four of them achieved 100% accuracy. We think the reason is the unique 

rotational gesture involved in Washing hands that is not in the other three activities. 

Time might be another factor that helps recognizing this activity, since this is the 

shortest activity among the four different activities. 
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Figure 30. Activity recognition accuracy over 
different models specified for different activities.  

Reading has been wrongly classified as Eating; that might be because they both 

have similar patterns (bringing spoon to mouth and turning pages both happen 

repeatedly with a considerable period of time in between).  

D) Conclusion 

          Activity recognition is an essential component in enhancing health care in 

smart environments. This section has proposed a method for recognizing 

activities of daily living (ADLs) through supervised learning. Using a single, 

wearable accelerometer, the raw sensor data are first discretized into bins; each 

bin is given a symbol. Suffix trees are constructed based on training data and 

stored in a pattern database. A similarity measure is proposed for recognizing new 

patterns and used to compare the new pattern to those stored in the pattern 

database. By using a Suffix tree, this model adapts pattern discovery techniques to 
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address the problem of activity recognition with wearable sensors. We have 

compared this model with 4 common machine-learning algorithms.  

Our experimental results show that quantizing data and using pattern discovery 

methods can help in activity recognition since it is extracting beneficial 

information from raw data. Furthermore, we have shown that achieving high 

accuracy in activity recognition can be done with only one wearable sensor.  

It can be seen that all four activities have been classified with relatively high 

accuracy. Usually accelerometers don't provide a very high accuracy in 

recognizing high level activities. In this study there are a number of elements that 

helped in achieving current results: 

 Experiments have been conducted with only one subject, so we don't 

have variation in performing activities among samples. 

 Moreover, it almost took the same amount of time for participant to do 

one activity in different rounds, and most of the activities have different 

duration by nature. Thus, we believe duration of activities was an 

important factor that helped the classifiers. 

 Subject performing the activities was a researcher with the background 

knowledge of this study and its purpose. This had effect on how the 

subject performed activities. 
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5.2 Experiments with Shimmer Accelerometer 

          In this experiment, data is collected in the Kyoto smart home for 24 

participants. Participants are aged from 18 to 35. We use shimmer accelerometer 

for two purposes: first, as wearable accelerometer and second, as shake sensor. 

More detailed information about shimmer sensors is provided in section 4.2.2 of 

this study. 

As wearable sensor shimmer accelerometers are attached to wrist and hip of 

participants. Gyro sensor is added to the accelerometer in order to capture 3-axis 

angular rate sensing. Figure 31 and Figure 32 illustrate where the sensor was 

placed on participants.  

 

Figure 31. Participant wearing shimmer 
accelerometer. 
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Figure 32. Participant wearing shimmer 
accelerometer 

As shake sensors, accelerometer with some modifications is used, so that it only 

sends ON/OFF messages. This modification and adding a threshold help us in 

using them as binary shake sensors. Shake sensors are attached to objects using 

Velcro straps so that they can easily be taken on/off.   

5.2.1 Data Collection 

A) Questionnaire  

          Participants spend approximately 5 minutes at the beginning of their 

sessions completing a paper-and-pencil based questionnaire about their age, 

education history and cognitive health. We require participants to be in a healthy 

cognitive state. 
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B) Activities 

          A total of 6 experiments have been used in this study. We will explain them 

in more detail in the following discussion. 

Sweeping. In this task the participant is asked to sweep the kitchen floor and 

dust the dining room and living room. They are told that all the supplies they 

need for this task, including the broom, duster and dustpan and brush are located 

in the kitchen closet. 

Medication. Participants are asked to fill a 7-day pill holder. They will find the 7-

day pill holder, the pill bottles and the directions for filling the pill holder in the 

kitchen cupboard. The directions for filling the pill holder are taped to the inside 

of the cupboard door.  

Cooking. For this task participants are asked to prepare a cup of noodle soup 

and get a glass of water for a friend. They are told that a glass, a measuring cup, 

the cup of noodle soup, and utensils are located in the cupboard. They have to fill 

the measuring cup with water and microwave for 3 minutes. Then follow the 

remaining directions on the cup of noodle soup to prepare the soup. In addition, 

they are asked to fill the glass with water using the pitcher of water located on the 

top shelf of the refrigerator. When they finish pouring the hot water into the cup 

of noodles and obtaining a glass of water, they have to bring all items to the 

dining room table for their friend. 
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Watering Plants. For this next task, they are asked to lightly water the apartment 

plants. There are 3 plants; two plants are located on the kitchen windowsill and 

the other plant is located on the living room table. The watering can is in the 

kitchen closet. Participants have to add water to the watering can using the 

kitchen faucet and lightly water the plants. 

Hand Washing. For the hand washing task participants are asked to wash their 

hands at the kitchen sink using the hand soap. After they are done, they need to 

dry their hands with the cloth towel. 

Washing Kitchen Countertops. For the last task they are asked to clean the 

kitchen countertops. They need to use the sponge and the dish washing soap to 

clean the countertops.  

Participants perform activities in the first floor of the Kyoto smart home. While 

they are doing the experiments no one else is in the first floor so that no 

unwanted sensors get triggered. One or two experimenters stay in control room 

located in the second floor supervising participants by watching them through 

cameras and talking to them through microphone. They read the instructions for 

each activity and ask participants to do it with freedom in choosing orders of the 

steps of each activity.  
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Object and wearable sensors need to be charged everyday which is done by 

experimenters at the end of each day. 

5.2.2 Data Annotation 

          In supervised methods data samples need to be labeled, thus annotators 

have to go through the samples and label them. This process of labeling data is 

called data annotation. One of the main concerns for supervised learning is the 

costly annotation process after collecting the data. Examples of data samples can 

be found in Table 3 and Table 4. 

Table 3. Subset of data used in this study 

Sensor 

Type 

Timestamp Sensor ID Value 

Motion 2011-03-16 12:41:21.913422 M014 ON 

Shake  2011-03-16 13:14:13.14079  SS010 MOVED 

Item  2011-03-16 13:12:07.425369 I006 ABSENT 

 

Table 4. Format of shimmer accelerometer output 
used in this study. 

Timestamp Sensor 

Name 

Value (X, Y, Z, Pitch, Yaw, Roll) 

2011-03-16 

13:12:07.236622 

SG023 (1190,2495,2440,1849,1834,1938) 

(1230,2442,2458,1860,1825,1887) 

(1237,2423,2474,1833,1825,1887) 
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(1193,2431,2485,1848,1793,1879) 

(1236,2409,2457,1828,1787,1853) 

 

A) Common Approaches 

          Research community has used different approaches for annotating their 

data. A few of them is discussed in the following. 

Experience sampling method 

ESM refers to a method of data collection in which participants respond to 

repeated assessments at moments over the course of time while functioning 

within their natural settings. Bao has used worksheets for participants to fill out 

after performing each activity (Liao, Location-based activity recognition, 2006). 

The tools of ESM have evolved to allow greater ease of data collection for the 

researchers as well as the participant. At its nascence, participants carried pagers 

or alarm watches, along with a stack of paper on which they recorded their 

responses when signaled. Today, hand-held computers (a.k.a. personal digital 

assistants (PDAs) or palmtop computers) can be pre-programmed to signal 

participants at random moments. 

The palmtop computers allow data to be directly transferred to statistical software 

packages or other programs for immediate analysis, and with no data entry, 
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mistakes are minimized or eliminated altogether. Furthermore, participants 

cannot as easily fake their responses as with the paper–pencil measures. 

Scollon et al in (Scollon, Kim-Prieto, & Diener, 2003.) provide a detailed 

discussion on ESM and its strengths and weaknesses. Some of the limitations 

mentioned in their work are as follows. 

Participant interruption is one of the limitations of ESM; signaling participants a 

few times a day can be annoying. Moreover, each participant has to carry the 

device all the time which is another burden. Fake response is another weakness. 

With wrist watches or beepers and paper-pencil reports, participants can easily 

fake their responses by completing all their forms in one sitting. 

Using Questionnaire and Interviewing after the experiments 

Another common technique for data annotation is subject self-report recall 

surveys which can be done by using questionnaire or interviewing subjects after 

the experiments. However, these techniques are prone to recall errors and lack 

the temporal precision required for training activity recognition algorithms. 

Using Video and Audio 

Some studies record full experiments and have annotators to annotate the data by 

watching the videos (Chambers, Venkatesh, West, & Bui, 2002; Logan, Healey, 

Philipose, Tapia, & Intille, 2007). This approach is more reliable but has issues 
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such as intruding the privacy of participants, need enormous storage for 

recording audio and video, being costly and so forth.  

B) Data Annotation for Current Study 

          Data annotation for this study is performed by two experimenters who 

themselves were involved in conducting the experiments. Due to the limitations 

mentioned above, we didn‟t use ESM method nor did we use any video or audio 

recording techniques. The human annotators were taught to observe the events 

as they were replayed using PyViz visualization tool which is described in section 

3.4. 

5.2.3 Methodology  

A) Features 

          Features used in this experiment can be divided in to three groups based 

on the type of sensor that generates that data. The features we used are discussed 

in the following discussion in more detail. Different feature settings are used and 

the best result is achieved by settings in experiment #3. 

 Experiment #1 

Environmental: Motion sensors are divided in to four groups based on the area 

of the sensor. These features are: LivingRoom, DiningRoom, Kitchen, and 

KitchenWindow. We count the number of times that a sensor in one group is 

triggered.  
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Object: Object sensors are divided into groups based on the activity in which 

they are triggered. The features are: Sweeping (dustpan, broom, duster), Cooking 

(bowl of noodles, water pitcher, measuring cup, glass, fork), WateringCan, 

HandSoapContainer, DishWashingSoap, and Medication (pill dispenser, medicine 

bottles).  

Wearable: Output data consists of 6 columns. For each column the following 

features are used: mean and standard deviation. These are considered for each 

arm and hip sensor separately.  

 Experiment #2 

Environmental: Motion sensors are used directly as features. Each feature 

represents how many times a motion detector is fired during the activity.  

Object: Object sensors are used directly as features. 

Wearable: For each column the following features are used: Mean, Standard 

deviation, XY correlation, YZ correlation, XZ correlation, Pitch / Yaw 

correlation, Pitch / Roll correlation, Yaw / Roll correlation. These are considered 

for each arm and hip sensor separately.  

Experiment #3 

Environmental: Instead of recording the number of times a motion sensor was 

triggered during an activity and using this value as one of the data features, we 
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compute the ratio of the number of times each individual motion sensor is 

triggered to the number of times all motion sensors are triggered in that activity. 

Object: The two following features have been added: 

- Total duration of each object use in each activity. 

- Average duration of each object use in each activity. 

Wearable: The same as experiment #2. 

B) Models 

          In this section we try most common classification algorithms for discrete 

data. The best algorithm will be chosen as a classification model throughout the 

remainder of the thesis. 

1) SVM 

A support vector machine (SVM) is a set of related supervised learning methods 

that analyze data and recognize patterns, used for classification and regression 

analysis. Given a set of training examples, each marked as belonging to one of 

two categories, an SVM training algorithm builds a model that assigns new 

examples into one category or the other. An SVM model is a representation of 

the examples as points in space, mapped so that the examples of the separate 

categories are divided by a clear gap that is as wide as possible. New examples are 
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then mapped into that same space and predicted to belong to a category based on 

which side of the gap they fall on.  

Kernel-based methods and SVMs in particular, are among the best performing 

classifiers on many learning problems. By using Kernel-based methods we will 

have linear-speed learning in non-linear spaces. SVMs belong to a family of 

generalized linear classifiers. These classifiers simultaneously minimize the 

empirical classification error and maximize the geometric margin. In addition, 

support vector machines ignore all but the most differentiating training data 

(those on or inside the margin). 

 For linear SVMs, at training time a quadratic problem should be solved, and at 

test time prediction is linear in the number of features and constant in the size of 

the training data. 

The limitations of kernel-based methods include the fact that choosing an 

appropriate kernel is challenging and must be done for each application.  In 

addition, the high dimensionality of the original learning problem can pose a 

computational bottleneck for the learning algorithm. 

For this study the SMO function found in Weka software is employed. This 

algorithm implements John C. Platt's sequential minimal optimization algorithm 

(Platt, 1998) for training a support vector classifier using polynomial or RBF 
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kernels. This implementation globally replaces all missing values and transforms 

nominal attributes into binary ones. It also normalizes all attributes by default. In 

our study we deal with a multiclass problem. Weka handles multiclass learning 

problems using a combination of pairwise classifiers.  

We considered this algorithm as one of our choices because Support Vector 

Machines are considered to be the best performing classifier among many 

learning problems. 

2) HMM 

The hidden Markov model can be considered as simplest simple dynamic 

Bayesian networks. A hidden Markov model (HMM) is a statistical Markov 

model in which the system being modeled is assumed to be a Markov 

process with unobserved (hidden) states. In a hidden Markov model, the state is 

not directly visible, but output, dependent on the state, is visible. Each state has a 

probability distribution over the possible output tokens. Therefore the sequence 

of tokens generated by an HMM gives some information about the sequence of 

states. Hidden Markov models are especially known for their application 

in temporal pattern recognition. 

Figure 33 represents the general architecture of a HMM where each circle 

represents a random variable. The random variable x(t) is the hidden state and the 

random variable y(t) is the observable state at time t. The arrows are used to 

denote conditional dependencies. The conditional probability distribution of any 
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hidden state x(t) at time depends only on the value of its preceding hidden state 

i.e. x(t − 1) i.e. the values at any time before time t − 1 have no influence on the 

value of state at time t which essentially is the Markov property. Also, the value of 

the observable state y(t) depends only on the value of the hidden state x(t) given 

at time t (Singla, 2009). 

 

Figure 33. General architecture of Hidden Markov 
Model. Figure has been adapted from Singla‟s 
Master thesis (Singla, 2009) 

Hidden Markov Models have been used in activity recognition studies (Singla, 

Cook, & Schmitter-Edgecombe, 2008; Kasteren, Noulas, Englebienne, & Krose, 

2008). Moreover, many extensions are proposed, including layered hidden 

Markov models (Oliver, Horvitz, & Garg, 2002), quantitative temporal Bayesian 

networks (Colbry, Peintner, & Pollack, 2002), propagation networks (Shi, Huang, 

Minnen, Bobick, & Essa, 2004) and aggregate dynamic Bayesian models 

(Patterson, Fox, Kautz, & Philipose, 2005). 
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Tokuda et al. (Tokuda, Heiga, & Black, 2002) mentions three following 

limitations for Hidden Markov Model. 1) An HMM state relies on piece-wise 

constant statistics within an HMM state, 2) HMMs do not easily represent or 

reason about the duration of events. 

3) Ensemble 

Ensemble methods use multiple models to obtain better predictive performance 

than could be obtained from any of the constituent models (Opitz & Maclin, 

1999). An ensemble is itself a supervised learning algorithm, because it can be 

trained and then used to make predictions. The trained ensemble, therefore, 

represents a single hypothesis. This hypothesis, however, is not necessarily 

contained within the hypothesis space of the models from which it is built. Thus, 

ensembles can be shown to have more flexibility in the functions they can 

represent. This flexibility can, in theory, enable them to over-fit the training data 

more than a single model would, but in practice, some ensemble techniques 

(especially bagging) tend to reduce problems related to over-fitting of the training 

data. As these algorithms conduct a weighted voting of many other algorithms, 

they usually perform better than many others. 

For this study, we use implementations of some of the ensemble algorithms 

included in the Weka toolkit. These algorithms include AdaBoostM1, Bagging 

and Dagging.  Bagging with LAD Tree as classifier achieved 97.33% accuracy, 
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AdaBoostM1 with LADTree achieved 97.33% and Dagging with SMO achieved 

95.33%.  

4) Bayesian Network 

A Bayesian network is a probabilistic graphical model that represents a set of 

random variables and their conditional dependencies via a directed acyclic graph 

(DAG). They are directed acyclic graphs whose nodes represent random variables 

in the Bayesian sense. Edges represent conditional dependencies; nodes which are 

not connected represent variables which are conditionally independent of each 

other. Each node is associated with a probability function that takes as input a 

particular set of values for the node's parent variables and gives the probability of 

the variable represented by the node. 

Bayesian Network can be used to compute the conditional probability of one 

node, given values assigned to the other nodes; hence, it can be used as a classifier 

that gives the posterior probability distribution of the classification node given 

the values of other attributes. (Cheng & Greiner, 1999) 

In theory, even approximate inference of probabilities in Bayesian networks can 

be NP-hard. For the special case of a polytree, has an efficient runtime of 

O(Nqe), where e is the maximum number of parents on a vertex  (MacKay, 

McEliece, & Cheng, 1998). 
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Fortunately, in practice approximate methods have been shown to be useful in 

many cases.  

A Naive Bayes classifier is a simple probabilistic classifier based on 

applying Bayes' theorem with strong (naive) independence assumptions. A Naive 

Bayes classifier assumes that the presence (or absence) of a particular feature of a 

class is unrelated to the presence (or absence) of any other feature. This classifier 

chooses as the output label class that yields the highest probability given the 

values of the data features.  Probabilities are estimated based on frequency of data 

feature values and class labels in the available training data.  

Training time complexity of Naïve Bayes is linear and essentially optimal. Test 

time complexity is also very efficient, linearly proportional to the time needed to 

just read in all the data. 

 

5) Selected Model 

All of the above models were evaluated on data from all sensor types and results 

shown in figure 34 illustrate that Bayesian Network perfoms best in classification 

of our activities. Although ensemble methods are usually expected to perform 

better than other models, but Bayesian Network still performs better in our 

experiments. In our model each feature is a child of the parent which is the 
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activity label; as a result, Bayesian network is considering features as conditionally 

independent and it is working as a Naïve Bayes classifier.  

 

Figure 34. Illustrates comparison between different 
algorithmic models  

HMM is usually used when dealing with accelerometer data because of the 

pattern-based nature of accelerometer data. That was the reason why we decided 

to run it on our wearable data. In order to use HMM for our data, we need to 

define a window size so that events in one window are considered as one new 

event. For each window we compute mean, standard deviation and correlation. 

As a result each event of new data has the following format. n  shows the window 

number which is new data‟s event number. 
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Mean of window n (x, y, z, pitch, yaw, roll), std of window n (x, y, z, pitch, yaw, 

roll), correlations of window n (x/y, x/z, y/z, pitch/yaw, pitch/roll, yaw/roll) 

Above features are calculated for both wearable sensors, as a result we have total 

of 36 features. We tried different window sizes. Results improved by decreasing 

the window size, which implies that HMM is not finding any particular pattern in 

data and it is not working as a pattern recognition model.  This result is not very 

unexpected for this study, we believe because we have complex activities, data 

doesn‟t consist of repetitive and recognizable patterns.  

Bayesian networks describe conditional independence among subsets of variables. 

And they allow combining prior knowledge about (in)dependencies among 

variables with observed training data. This model achieved the highest accuracy 

with 100%. As a result, all experiments in the rest of this thesis will use Bayesian 

Network as the classification algorithm.  

5.2.4 Results 

          In this section, first we evaluate each sensor type individually and then 

combine classes of sensor types to recognize 6 chosen ADLs. Our purpose is to 

find a correlation between sensor modality and the targeted activity to recognize. 

Figure 33 illustrates the overall accuracy for each sensor modality using Bayesian 

Network classifier. Figures 34 through 41 visualize confusion matrix of each 
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experiment. It shows how many samples of each activity were classified correctly 

and how many were classified as other activities. 

 

Figure 35. Comparison of different sensing 
modalities based on their overall accuracy in 
recognizing our 6 set of ADLs. 

Figure 35 illustrates the results for activity recognition using only environmental 

sensors. Sweeping & Dusting and Medication have been classified with the same 

accuracy and 22 out of 25 samples were classified correctly for these activities. 

Cooking is classified correctly at all times. 23 samples out of 25 are correctly 

classified as Watering Plants. Hand Washing and Countertop Washing are classified 

with the same accuracy and they were the hardest activities to recognize with 

Environmental sensors.  
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Figure 36. Bayesian Network classification with 
environmental sensors. 

We believe that activities mentioned above that are classified with highest 

accuracy either had a unique pattern of changing locations or there was a contact 

switch sensor that helped in classification. For instance, in Cooking, participant 

spends some time near stove and then brings the food to dining room. This has a 

unique location movement that helps classifier algorithm to classify it with 100% 

accuracy. Hand Washing has been classified as Medication and Countertop Washing. 

We believe the reason is that these activities take place in almost the same 

location, near kitchen countertop. Countertop Washing was classified as Hand 

Washing 5 out of 25 times and we believe the reason is they both occur in exactly 
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the same location and there is no environmental sensor other than motion 

sensors to differentiate between these activities. Sweeping & Dusting is classified as 

Watering Plants because they are the only activities that participant needs to visit 

dining room and all kitchen corners.  

B) Object 

          This type of sensor modality achieved 98.67% accuracy in general. 

Although there was a one to one map between objects and activities because of 

the noise in real data we do not achieve 100% accuracy. Shake sensors have to be 

sensitive to shakes and vibrations and controlling all movements in a real home is 

not possible. For example, in our study, when the participant is shutting the 

cupboard door heavily, all of the shake sensors located in the cupboard are 

triggered. Or sometimes with heavier participants walking in the kitchen, sensors 

attached to items located on the floor are triggered. Figure 36 illustrates the 

location of each object sensor in our study. 
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Figure 37. Kyoto kitchen layout with object 
sensors‟ locations. 

Figure 37 illustrates that Medication and Washing Hands have been classified with 

only one mistake. All other activities are classified correctly. Medication is classified 

as Cooking because both supplies are stored in the same closet and when 

participants close the door heavily, all of the objects in the cupboard get triggered. 

Hand Washing is classified as Countertop Washing in one sample, we believe because 

both hand soap and countertop cleanser are located on sink, using one might 

trigger the other as well. 
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Figure 38. Bayesian Network classification with 
object sensors 

C) Wearable 

          We expected wearable sensors to perform very poorly in this study. The 

reason for this is while performing complex activities, people don‟t move their 

hands at a particular range or speed. Patterns of movements are not easily 

distinguishable in complex activities. Moreover, as discussed in section 2.3.4, 

people often to include other, irrelevant subtasks while performing complex 

activities, which makes the classification problem even more challenging. In our 

study the wearable sensor alone performed better than we anticipated (Figure 38), 

and it outperformed Environmental modality. One factor that might have helped 
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in this performance is the fact that different activities required different time 

durations. Cooking was the easiest activity to be recognized by our wearable 

sensing technology.  

 

Figure 39. Bayesian Network classification with 
wearable sensors. 

D) Environmental + Object 

          This modality performed very well overall with an average accuracy 

99.33%, the second highest accuracy. Combining environmental and object 

sensors provides a rich amount of information needed for distinguishing most 

activities. Poorest performance is for Hand Washing. This activity was classified as 



 

124 

Countertop Washing, which is not unexpected. They take place in the same location 

and involved objects are affected by ambient vibration as we discussed earlier. 

 

Figure 40. Bayesian Network classification with 
combination of environmental and objects sensors. 

E) Environmental + Wearable 

          As Figure 33 illustrates, performance has been improved by combining 

these two sensing modalities, thus helpfulness of object sensors becomes 

apparent. Even though this model is still weaker than other combinations. Figure 

40 illustrates Watering Plants is the most difficult activity to get recognized by this 

modality.  
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Figure 41. Bayesian Network classification with 
combination of wearable and environmental 
sensors. 

F) Object + Wearable 

         This model achieved 100% accuracy. 

G) All (Environmental + Object + Wearable) 

          This model and Object + Wearable model achieved the highest accuracy 

among all combinations that we considered, with 100% accuracy. This result is 

not far from our hypothesis, the more sensors you use, you have more 

information for training the algorithm and as a result you will get better results. 
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Moreover, if objects in interest are chosen correctly and used object sensors are 

reliable they can perform very well.  

5.2.4 Discussion 

          As Figure 34 demonstrates, environmental sensors achieved the lowest 

accuracy (88%) among all other sensor modalities. As it can be seen in Figure 41 

it performed very well for all activities except Hand Washing and Washing 

Countertop. The confusion between these two activities occurs because they have 

to be recognized with only motion detector and they happen at exactly the same 

location. As a result, we conclude that environmental sensors can perform very 

well for many activities as long as they don't take place in exactly the same 

location. If they do, there should be another sensor modality other than motion 

detector to provide additional information for classifying those activities. 

Alternatively, time of day and other contextual information may provide 

additional discriminating features for in-home naturalistic settings.  
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Figure 42. Activity recognition for different 
technologies per activity 

The next lowest accurate modality after environmental was wearable sensors with 

91.33% accuracy. Wearable sensors can be a good option for recognizing short 

movements of body parts such as raising hand, shaking hands, punching and so 

forth or for basic activities such as walking, running and sitting. But our results 

show that it can't perform very well with relatively long and complex activities 

such as our six selected ADLs. This sensor modality needs to be combined with 

other modalities. Figure 41 demonstrates that it has more difficulty recognizing 

Cooking and Washing Countertops. 
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The third lowest accuracy was achieved by a combination of environmental and 

wearable sensors with 97.33%. Figure 41 demonstrates that adding wearable 

sensors boosted environment sensors in recognizing most activities. This suggests 

that although wearable sensors do not perform very well in complex activities, 

combining them with other sensing technologies can be helpful in recognizing 

some activities. 

Object sensors achieved the overall accuracy of 98.67%. As we discussed earlier 

having one to one mapping between objects and activities in addition to using a 

reliable sensing modality leads to achieving high accuracy. 

Adding environmental sensors to object sensors helps in correctly classification 

of Medication, but it does not help in boosting the accuracy of Washing Hands. 

Because Washing Hands and Countertop Washing take place in the same location. 

Sensor modality of object + wearable and combination of all sensor types both 

achieved 100% accuracy.  

These results demonstrate that combining different sensing technologies 

outperforms using them separately. By adding low accurate modalities such as 

wearable or environmental sensors to others we can increase the performance of 

our sensing modalities. However, an important point is that all of the limitations 

of each technology should be taken into consideration while choosing the proper 
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one for a study. There should be a tradeoff between accuracy and problems that 

using a particular sensing technology would make. 

In addition, monitored activities play an important role in choosing the proper 

technology. For instance, if activities that we need to recognize do not have 

shared objects, object sensors would distinguish these activities quite well; or if 

the location movements are unique for each activity, environmental sensors 

would be a proper technology to use.  

Sensor reliability is another important factor. Although shake sensors still have 

noise, but our results compared to studies with RFID tags mentions in section 

2.2.1 suggests that they are more reliable than RFID technology. 

In summary, our experimental results support our hypothesis and each sensing 

modality performs better with a subset of activities. Moreover, combining 

different sensing platforms can increase the overall accuracy, however, all 

limitations of each technology should be considered when selecting a sensing 

modality.     
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CHAPTER SIX 

6. DEFINING THE COMPLEXITY OF AN ACTIVITY 

 

6.1 Introduction 

          Activity recognition is a widely researched area with applications in health 

care, security and other domains. With each recognition system considering its 

own set of activities and sensors, it is difficult to compare the performance of 

these different systems. More importantly, it makes the task of selecting an 

appropriate set of technologies for recognizing an activity challenging. This 

chapter defines complexity measurements for activities and uses grammar 

complexity as the second approach. In addition, it uses grammars to formally 

represent different ADLs. 

While sitting, standing, walking, etc., appear at one end of the spectrum of 

activities, the other end consists of complicated activities such as cooking and 

taking medication, which encompass ambulation, ADLs and instrumental ADLs 

(iADLs). From a computational standpoint, it is difficult to combine these 

different activities into a single category for the purpose of designing a 

recognition system. Having a standard way to classify these activities based on 

their complexities will help researchers in all fields who want to study activities. 

This is the primary motivation behind this paper, where we attempt to define a 



 

131 

formal complexity measure for activities. The complexity of an activity can be 

defined in terms of different parameters such as the underlying sensing modality, 

the computational techniques used for recognition or inherent properties of the 

activity. We describe each of these parameters in greater detail. Defining such a 

complexity measure provides a means for selecting activities for conducting 

benchmarking experiments. Furthermore, it also helps in choosing the correct 

technology for recognizing a specific set of activities. 

This study has used two approaches for activity complexity measurement. First, 

the complexity of an activity is defined in terms of three components: Sensing 

complexity, Computational complexity, and Performance complexity. Second, 

grammar complexity has been used as a measurement for complexity of an 

activity. 

6.2 Defining Activity Complexity 

          In general, the complexity of an activity can be defined in terms of 

different factors. In this paper we attempt to define it in terms of three 

components: Sensing complexity, Computational complexity, and Performance 

complexity. 
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6.2.1 Sensing Complexity 

          Sensing complexity refers to complexity of sensors which are used in 

collecting data. Research advances in computing have resulted in the 

development of a wide variety of sensors that can be used for sensing activity.  

On one hand there are sensors that have to be worn by individuals (Krishnan & 

Panchanathan, 2008) and on the other hand there are environmental and object 

sensors that have to be embedded in the environment for gathering activity 

related information (Singla, Cook, & Schmitter-Edgecombe, 2008). Each of these 

sensors provides a rich set of information on a certain set of activities. For 

example, as we discussed earlier in the thesis it is easier to recognize ambulation 

using wearable sensors over environmental sensors, while iADLs such as cooking 

and bathing are easier to recognize using environmental or object sensors. We 

define the sensing complexity of activities in terms of the following parameters: 

the number of distinct sensors fired, the number of sensor types fired, the 

number of objects involved to which a sensor can be attached, sensor size, sensor 

price, ease of use (Subject, Deployment), type of output data, battery life and type 

of sensor (wired or wireless). In the following paragraphs, we will discuss each of 

these parameters in more detail. 

The number of sensors used is an important factor that defines this complexity, 

which in turn can be divided into two groups: the number of distinct sensors 
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fired and the number of sensor types fired. For example, one particular sensor 

might be fired many times, but we count it as only one distinct sensor. Based on 

the technology used in each study, different sensor types can be seen, such as 

environmental sensors (motion, temperature, light, etc.), object sensors (RFID 

tags, accelerometers, shake sensors, etc.) and wearable sensors (accelerometers, 

RFID, health monitoring sensors, etc.). For example, if we are using 

environmental motion sensors, wearable accelerometers and shake sensors on 

objects, all three sensor types are fired during a cooking activity.  For washing 

hands, however, only two of them are fired: environmental and wearable 

(assuming no sensor has been placed on the soap). The number of objects 

involved in an activity that can be sensed through some modality is another factor 

defining the sensing complexity. For some activities such as sweeping, placing 

sensors on the objects involved (broom) is possible, thus it can be considered 

simpler than reading books (placing a sensor on every book is impractical). 

The price and form factor of a sensor is another component of the sensing 

complexity. An expensive sensor system would be harder to implement, so it can 

be considered more complex. The same is true with sensor size, especially for 

wearable and object sensors. Smaller sensors are easy to adopt, while bigger 

sensors are relatively difficult to deploy. The ease of use of a sensor can be seen 

from two perspectives: Subject and Deployment. Ease of use with respect to 

subject refers to ease of use and the level of acceptance with which participants 
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will adopt and use sensors. For example, some wearable sensors may be easier 

and more comfortable for participants to wear. The deployment aspect of ease of 

use can be defined in terms of the ease with which experimenters install a 

particular sensor. A sensor might give us helpful data but working with it might 

be so hard for experimenters that they prefer alternative but less useful tools. This 

reasoning would be true about type of output of the sensor as well. Some sensor 

outputs need further complex computations and pre-processing which results in 

higher sensing complexity.  

The battery life of a sensor is an important factor especially in the context of 

wireless and wearable systems. Choosing wired or wireless sensors depends on 

the requirements of the system and it has a corresponding effect on the sensing 

complexity.  

While the values for some of these parameters (e.g., number of sensors, battery 

life) can be derived empirically, other factors (e.g., form factor and ease of use) 

require some kind of subjective evaluation. We would expect the measure derived 

from these parameters to be low for ambulatory activities for wearable sensors 

such as accelerometers, but will be high for environmental sensors such as 

motion sensors. In Table 6 we present some popular activities analyzed using 

these different factors. 
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6.2.2 Computational Complexity  

          Advances in machine learning and pattern recognition have resulted in a 

number of supervised and unsupervised techniques for recognizing activities. 

Discriminative classifiers such as SVMs (Krishnan & Panchanathan, 2008), 

Logistic regression (Krishnan & Panchanathan, 2008), CRFs (Nazerfard, Das, 

Holder, & Cook, 2010) and generative classifiers such as GMMs (Pansiot, 

Stoyanov, McIlwraith, Lo, & Yang, 2007), HMMs (Singla, Cook, & Schmitter-

Edgecombe, 2008) are very popular for activity recognition. In addition to this, 

computational complexity also includes the algorithms that transform the raw 

data stream into a form that is used by some of the recognition algorithms. 

Examples of these algorithms are FFTs (Huynh & Schiele, 2005), wavelets, and 

other techniques that extract the statistical and spectral properties of the raw data. 

The main component of the computational complexity is the complexity of the 

underlying recognition/transformation algorithm. Other factors that affect the 

computational complexity include memory requirements of the algorithm and 

real-time performance. The relevance of the computational complexity of an 

activity depends on the computational resources available. For example, if the 

goal of the system is to perform recognition on a low power device such as 

mobile phone, the computational complexity plays an important role in selecting 

the appropriate set of algorithms. 
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6.2.3. Performance Complexity  

          We define the performance complexity to be an abstraction of some of the 

inherent properties of an activity that is independent of the underlying sensing 

and computational mechanisms. This complexity term can be defined using 

different parameters such as: average duration and deviation, duration of non 

repetitive patterns, number of activity steps, number of distinct location 

movements, and number of people and objects involved. 

The average duration of an activity, even though an important component, does 

not clearly differentiate the complexity of activities. In other words there is no 

general rule that can say an activity with higher duration is more complex or vice 

versa. As an example, cooking is a relatively long and complex activity. At the 

same time sleeping is also long but not very complex from the perspective of 

recognition. Thus, this component should be taken into consideration along with 

other factors. 

Perhaps one could look at how much time during the activity the person was 

active. For example, a person is not active for a large portion of time while 

sleeping and watching TV. Associated with the average duration of an activity is 

also the deviation in the duration in the performance of the activity. 

The third component is the duration of non-repetitive patterns. Patterns that are 

inherent in activities give us useful information. Repetitive patterns are easier to 



 

137 

recognize. For example, walking or running involve periodic movements of the 

human body that can be easily recognized, in contrast to movements such as 

pouring water, or scooping sugar while making a cup of tea. Some activities have 

a predefined time of occurrence during the daily routine of an individual. Such a 

unique characteristic of an activity can be effectively utilized by machine learning 

algorithms for recognition. An example of such an activity is taking medication. 

Many individuals take medicine at the same time each day or in the same context, 

such as while eating a meal. 

Typically every activity is defined in terms of a number of steps. Some activities 

have a larger number of steps which make them more complex. An activity step 

can be defined as event that cannot be divided in to sub-events in the current 

technology. Defining the activity steps in this format facilitates different 

representations of the steps depending on the underlying technology. The next 

issue to be considered is the number of distinct location movements; an activity 

which is performed in different locations can be considered more complex in 

comparison with an activity that takes place in one location. 

Other factors that define the performance complexity of an activity are the 

number of people and the number of objects involved in that activity. The 

activities get more complex with an increasing number of people and objects 

defining the activity. 
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6.3. Evaluating the Complexity 

          In Table 5 we represented 6 common activities and measured some of their 

complexity measurements that are discussed in this section. There are different 

ways to generate one total value from these measurements. One straight forward 

approach would be assigning numbers 1, 2, 3 to values low, medium and high 

respectively, and then summing up all the values for each activity. We can ignore 

the value of „Number of people involved‟ in this case, since it is the same for all 

these activities. Following the above rules we will get 12 for „cooking‟, 10 for 

„sweeping‟, 9 for „watering plants‟ and „washing counter tops‟, 8 for „hand 

washing‟ and 6 for „medication‟. Therefore, „cooking‟ can be categorized as the 

most complex activity to recognize with this study‟s sensing technology and 

„taking medication‟ as the easiest one.  

For generating these examples we assumed sensing technology of WSU Center 

for Advanced Studies in Adaptive Systems (CASAS), which consists of three 

sensor types (environmental, wearable and object). 
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Table 5. Complexity measurement over activity 
based on WSU CASAS sensing technology 
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Sweeping Low High High Medium 1 No Low 

Medication Medium Low Low Low 1 Yes Low 

Watering 

plants 
Low 

Mediu

m 
Medium Low 1 No Medium 

Hand 

washing 
Medium 

Mediu

m 
Low Low 1 No Low 

Washing 

kitchen 

countertops 

Medium Low Medium Medium 1 No Low 

Cooking High 
Mediu

m 
High Medium 1 Yes Low 
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6.4. Using Grammar Complexity 

          While the complexity values can be derived from pre-defined measures as 

described previously, another possible approach is making use of grammars for 

representing activities (Sahaf, Krishnan, & Cook, 2011). Grammar complexity can 

then be used for measuring the complexity of the corresponding activity. Using a 

grammar has different benefits. The grammar can formally define complex 

activities based on simple actions or movements. Rules are understandable by 

human. The grammar can also be extended and modified at any time and it can 

be used by systems with different technologies. In addition, grammars provides 

us with a formal representation of activities which helps researchers in different 

fields to have a benchmark while trying to choose and compare activities to 

monitor in their studies.  

Researchers have used grammars for representing different activities. Ward et al. 

used wearable accelerometers and looked at wood workshop activities such as 

“grinding” and “drilling” (Ward, Lukowicz, Tr ¨oster, & Starner, 2005). Most of 

these studies use cameras for gathering data. For example, Ryoo and Aggarwal 

have defined grammars for activities such as “Shake hands”, “Hug”, “Punch”, etc 

(Ryoo & Aggarwal, 2006). Chen et al. have used grammar in gesture recognition 

(Chen, Georganas, & Petriu, 2007). There are a few studies on using grammar for 

representing ADLs.  In particular, Teixeira et al. has represented ADLs with 

hierarchical finite state machines (Teixeira, Jung, Dublon, & Savvides, 2009). 
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In other areas such as Human Computer Interaction (HCI), user tasks have been 

represented by means of task notations. A task defines how the user can reach a 

goal in a specific application domain.  Paterno has defined CTT model which 

provides a rich set of operators to describe the temporal relationships among 

tasks and enables designers to describe concurrent tasks (Paternò, Mancini, & 

Meniconi, 1997). In addition, for each task, further information can be given; task 

is described by attributes including Name, Type (abstract, user, application, 

interaction), Subtask of, Objects, Iterative (a Boolean indicating whether the task 

is iterative), First action, and Last action. 

Beyond these descriptive aspects, these notations can also be used to assess the 

complexity of the tasks. Palanque and Bastide have modeled tasks using the 

Interactive Cooperative Objects (ICO) formalism, which is based on Petri nets 

and on the object-oriented approach (Palanque & Bastide, 1970). In their 

quantitative analysis of task complexity they have considered the number of 

nodes (corresponding to the number of states in the task model) the number of 

actions (corresponding to the number of arcs with different labels) and the length 

of the path to come back to the initial state which are associated with weights.  

To the best of our knowledge, no study has looked at grammar complexity to 

derive activity complexity. Different grammars such as CFG (Teixeira, Jung, 

Dublon, & Savvides, 2009), SCFG (Moore & Essa, 2001), DOP (Data Oriented 
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Processing), LFG (Lexical-functional Grammar) can be used for this purpose. In 

this study we will focus on Context-free Grammars, in which the left-hand side of 

each production rule consists of only one single non-terminal symbol, and the 

right-hand side is a string consisting of terminals and/or non-terminals. Human 

actions and interactions are usually composed of multiple sub-actions which 

themselves are atomic or composite actions and CFG is able to construct a 

concrete representation for any composite action (Ryoo & Aggarwal, 2006). On 

the other hand, context-free grammars are simple enough to allow the 

construction of efficient parsing algorithms (Chen, Georganas, & Petriu, 2007). 

In this study we present a very simple CFG as a baseline for future work which 

can represent sequential behaviors. In order to define a CFG, we need to define 

terminals and non-terminals symbols. We can associate the atomic actions with 

the terminals and complex actions with non-terminal symbols. However, as 

discussed before, the definition of the atomic action can vary according to the 

underlying sensing technology. For example, if one is looking at walking patterns, 

atomic action can be each movement of legs and hands, if one is using 

accelerometers as the sensing modality. In contrast, in a study that only uses 

environmental sensors, moving from one part of the room to the other which 

results in triggering a new sensor is considered atomic. In this paper, we try to 

define a general definition in a way that any research study will be able to adopt it. 

Continuing with our previous discussion, we define an atomic action as an event 
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that cannot be divided into smaller sub-events that is recognizable by the 

underlying sensing modality. If an action contains two or more atomic actions, it 

is classified as a composite action (Ryoo & Aggarwal, 2006). By using CFGs, we 

are able to define a composite action (Non-terminal) based on atomic actions 

(Terminals). 

In order to formally represent an atomic action we follow the linguistic theory of 

“verb argument structure”. Park‟s operation triplet is <agent-motion-target> 

(Park, Park, & Aggarwal, 2004), where agent refers to the body part (i.e. arm, 

head) directed toward an optional target. The motion set contains action atoms 

such as “stay”, “move right”, etc. 

However, this triplet is too specific to their sensing technology which is using 

camera and image processing. As a more generic formal representation we define 

an atomic action as <agent – motion – location - target> where an agent is the 

person performing the action, motion represents the event of that atomic action 

which can be in any form based on the technology, location indicates the location 

of the event and target is the object or person in interaction. If the action does 

not contain any interactions, the target value will remain null. As an example, we 

chose two common activities and formalized them with this CFG scheme. The 

following examples focus on the „Sweeping‟ and „Dusting‟ activities. There is only 

one person involved in these activities which is represented by „i‟. Complex 
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actions such as „Dusting‟ is represented as „OR‟ of two atomic actions 

„DustLivingRoom‟ and „DustDiningRoom‟. In order to generate these examples 

we assumed CASAS sensing technology which we have described before. 

Sweeping:  

RetrieveBroom(i) =  

    atomicAction(<i, RaiseHand, Near kitchen cupboard, Broom>) 

SweepKitchenFloor(i) =  

    atomicAction(<i, Repetitive pattern & Raise, Kitchen, Broom>) 

Sweep(i) -->  

    RetrieveBroom(i) and SweepKitchenFloor(i) 

 

Dusting: 

DustLivingRoom(i) =  

    atomicAction(<i, Repetitive pattern & Raise, Living room, Duster>) 

DustDiningRoom(i) = 

    atomicAction(<i, Repetitive pattern & Raise, Dining room, Duster>)  

Dusting(i) -->  

   DustLivingRoom(i) or DustDiningRoom(i) 

RetrieveDuster(i) =  

    atomicAction(<i, RaiseHand, Near kitchen cupboard, Duster>) 

DustRooms(i) -->  
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   RetrieveDuster(i) and Dusting(i) 

As discussed before, the complexity of each activity can be calculated from the 

corresponding grammar complexity. There are various ways for obtaining 

complexity of a grammar, such as considering nodes and edges of finite state 

machines for CFG grammars. Number of alphabets, rules, terminal and non-

terminal symbols can be other factors in this regard.  

6.5. Summary and Conclusion 

          In this chapter, we have defined the complexity of an activity using two 

approaches. First, we have proposed measurements along three dimensions 

sensing, computation and performance. We have illustrated some of the 

parameters that define each of these dimensions, and then categorized some of 

the popularly used ADLs using these measures. In addition, we propose to use 

grammars as a formal representation of activities and make use of grammar 

complexity for categorizing activities. 
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CHAPTER SEVEN 

7. CONCLUSIONS AND FUTURE WORK 

          Most studies on activity recognition focus on enhancing recognition 

algorithms and evaluating recognition results under varying conditions. We 

believe that representing the strengths and limitations of different sensor types is 

an important point that has not been addressed adequately in the literature. In 

this study, we presented different sensing technologies that can be used for 

activity recognition, particularly for indoor activities. We discussed the positive 

points and the limitations of each technology. Moreover, we evaluated different 

sensing technologies on data gathered from the CASAS smart home. Our 

experiments show there is a close relationship between each sensing technology 

and a subset of activities that can be recognized best with that technology. These 

results can be beneficial for researchers who want to select the proper sensing 

modality for their study. In the future, more sensor types can be evaluated using 

more activities.  

In the second part of this work, we presented two approaches for estimating the 

complexity of an activity. In the first approach we defined features along three 

dimensions and categorized some of the popularly used ADLs using these 

measures. In the second approach we proposed using grammars for representing 

activities and made use of grammar complexity for classifying ADLs. 
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In the future we intend to use wearable sensor data for recognizing actions that 

are part of activities as opposed to recognizing the whole complex activity. Then, 

we anticipate using this result in the grammar representation model that we 

presented in second part of this study. Defining grammars for activity recognition 

has the benefit of making the process understandable by humans, adaptable to 

different technologies, and easily editable. In the future, more complex grammar 

types, such as grammars that can represent parallel activities can be used. 



 

148 

APPENDIX A 

A. List of Activities of Daily Living (ADLs) 

Cleaning the Living Area 
Vacuuming the floor 
Dusting 

Cleaning the Bedroom 
Making the bed 
Vacuuming the floor 
Dusting 
Changing the sheets 

Cleaning the Bathroom 
Cleaning the bathroom floors and walls 
Cleaning the sink, tub and toilet 

Cleaning the Kitchen 
Washing dishes 
Drying dishes 
Cleaning the outside of the stove 
Cleaning the oven 
Gathering and taking out the trash 
Cleaning inside/outside of refrigerator 
Sweeping floor 
Mopping floor 
Washing countertop 

Home maintenance 
Cleaning the windows 
Cleaning the ceiling fans  
Replacing light bulbs 
Replacing the batteries in smoke detectors 

Laundry 
Sorting laundry 
Loading/unloading washer/drier 
Folding laundry 
Hand washing 
Ironing 
Meal Preparation and Eat 
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Eating 
Drinking 
Preparing food 
Preparing drink 

Grooming Personal Hygiene and Dressing 
Bathing 
Hand Washing 
Combing hair 
Brushing teeth 
Flossing teeth 
Using mouthwash 
Shaving 
Trimming nails 
Outfit Selection 
Putting on clothes 

Pet Care 
Feeding/watering pet 
Walking pet 
Cleaning birdcage or fish tank 
Cleaning the kitty litter box or dog pen 
Bathing pet 
Grooming pet 

General 
Transferring in and out of bed 
Taking medication 
Watching DVD/TV 
Statement Filling 
Reading book/magazine 
Writing checks/birthday cards 
Filling picnic Basket 
Use of the telephone 
Working on computer 
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