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Abstract-This paper investigates the ability to perform 

activity recognition on simple (single action) and complex 

(multi-action) activities using the accelerometer and 

orientation data collected from a mobile phone.  Data 

collection was performed using an Android smartphone for 8 

men and 2 women.  Features extracted from the data were 

used to train and test a sample of machine learning algorithms.  

The performance of the algorithms was measured over various 

window lengths of time. 

 

I.   INTRODUCTION 

Human activity recognition is an important area of 

machine learning research because of its real-world uses.  

Automated activity recognition reduces the necessity for 

humans to oversee difficulties individuals might have 

performing activities, such as falling when they try to get 

out of bed.  Activity recognition can also be used in 

conjunction with pattern recognition to determine changes 

in a subject’s routine.  For these reasons the technology has 

many potential uses in healthcare and eldercare. 

Two methods of collecting data for performing activity 

recognition have been extensively researched.  The first 

method relies upon environmental sensors to track features 

such as motion, location, and object interaction.  

Alternatively, the second method uses a network of sensors 

attached to the human body to track the acceleration of 

specific limbs as well as the body as a whole.  Both of these 

methods have demonstrated impressive results.   

A major hurdle in implementing these systems outside of 

trials is how unnatural the sensors are.  Environmental 

sensors are generally bulky and costly.  They also must be 

wired or have their batteries maintained.  Both cases involve 

a large investment into setting up and maintaining the 

system.  Body sensors require daily effort from the user to 

wear and maintain them or else they are useless for 

collecting data.  Additionally they are bulky and require 

batteries, two factors that reduce the likelihood of constant 

use by the user. 

This paper describes the effectiveness of using the 

accelerometer and gyroscope of a smartphone as a more 

natural alternative to a series of body sensors.  While many 

older adults are currently not likely to carry smartphones, 

younger people are increasingly likely to carry a mobile 

phone on them.   These people represent the next 

generations of elders.  So while a phone may still be an 

unnatural accessory for older people it is becoming 

increasingly less so.  Using a phone as the primary device 

for data collection increases the likelihood of data coverage 

and represents a minimal cost and maintenance commitment 

to the user. 

Data for the training and testing recognition algorithms 

was collected from ten subjects who were instructed to wear 

the phone naturally as they performed various activities. 
  

II.   BACKGROUND 

Previous activity recognition work has focused on using a 

network of environmental or body sensors.  While activities 

and restrictions have varied between studies, most have 

provided promising results. 

A. Environmental Sensors 

Tapia, et al. [1] collected data in two homes containing 77 

and 84 separate state-change sensors, respectively.  

Seventeen separate activities were monitored and activities 

could overlap. The goal was to determine when an activity 

began, what activity it was, and how long it lasted.  Data 

was self-annotated by subjects in the study using the 

context-aware experience sampling tool [2].  The tool is a 

PDA that subjects carried with them that would prompt 

them to respond with what activity they are performing.  

The study found a large range (from 25% to 89%) in the 

accuracy of detecting each activity.  Overall, a peek 

accuracy of 38.79% was reported for correctly detecting an 

activity using a multiclass naïve Bayes classifier. 

Another study let by Philipose, et al. [3] used radio-

frequency-identification (RFID) tags which attach to objects 

and trigger when near an RFID reader worn on the subject’s 

hand.  The study involved fourteen activities including oral 

hygiene, using appliances, and infant care.  Activities were 



correctly recognized as occurring 88% of the time and the 

correct activity was identified 73% of the time. 

Yet another study employed environmental sensors to 

perform long-term activity recognition in participant homes 

as they performed their normal daily routines [4].  This 

study also demonstrated that activity models could be 

transferred across multiple spaces to recognize activities 

with no training data in a new setting. 

 

B. Body Sensors 

Other researchers have focused on using wearable sensors 

to perform activity recognition.  Bao and Intille [5] used a 

series of five biaxial accelerometers sampling at a rate of 

76.25 Hz.  Sensors were placed on the left bicep, right wrist, 

left quadriceps, right ankle, and right hip.  The 

accelerometers couldn’t be wired together without 

restricting the subject’s movement so each kept its own 

time.  Subjects performed twenty different activities ranging 

from walking to folding laundry to strength training.  Data 

on these activities was collected while subjects completed 

an obstacle course.  Subjects also performed activities in a 

controlled setting.  For feature extraction, a window size of 

512 samples was used (6.7 seconds at 76.25 HZ).  An 

accuracy of 84% was reported using decision tree 

classifiers, while the accuracy of individual activities ranged 

from 41.42% (stretching) to 97.49% (working on computer). 

A second experiment conducted by Ravi, et al.  [6] used a 

single accelerometer mounted onto the pelvic region of 

subjects to collect data on eight activities: Standing, 

walking, running, climbing up stairs, climbing down stairs, 

sit-ups, vacuuming, and brushing teeth.  The accelerometer 

transmitted data over Bluetooth to a PDA at a rate of 50 Hz.  

The data was annotated by the researcher as it occurred.  

Four features: mean, standard deviation, energy, and 

correlation, were extracted from the raw accelerometer data 

in window lengths of 256 samples (roughly 5.1 seconds at 

50 Hz).  Using cross validation, peek accuracy was 99.57% 

for recognizing a single subjects activities and 99.82% for 

multiple subjects.  This accuracy was achieved using 

plurality voting which selects the most common prediction 

from five classifiers: decision tables, decision trees, K-

nearest neighbors, SVM, and naïve Bayes.   

 

C. Discussion 

Previous activity recognition experiments have had a 

large range in reported accuracies.  Some of the differences 

between experiments include the number of activities and 

the complexity of the activities.  A larger number of 

activities means more overlap in activity features and makes 

it harder to discern exactly which activity is being 

performed.  This difficulty is compounded in environmental 

sensor studies when it first has to be determined if any 

activity is taking place at all.  Activities can also be 

concurrent, performed at the same time, or interleaved 

where one activity is broke up by a other concurrent 

activities [7]. 

Simple activities, such as walking, can be represented as 

a single repeated action: taking a step forward; whereas 

complex activities, such as taking medication, involve 

multiple actions: opening a cupboard, taking out pills, 

swallowing, and returning the remaining pills.  Other 

complex activities may involve simultaneous or overlapping 

actions.  These traits decrease the ability to reduce these 

actions down to discrete features.  

Another factor that affects the performance of activity 

recognition systems is how general the system as a whole is.  

Does it classify all driving as a single category or is 

highway driving separate from city driving? Also of note is 

how many subjects and locations are involved with the 

system.  The algorithm can be tailored to a specific 

individual in a specific environment or be fitted for multiple 

subjects in any number of environments. 

  

III.   DESIGN 

The activity recognition is performed as a three-part 

process.  First data is collected and pooled from multiple 

participants, than features are extracted from that data, and 

finally machine learning algorithms are trained and tested. 

 Subjects wore an Android smartphone that contained a 

triaxial accelerometer and gyroscope.  The location and 

orientation of the phone was not standardized.  Subjects 

input the task they were about to perform on the phone and 

then handled starting and stopping the data collection 

(Fig.1). Subjects also included the location they were 

wearing the phone purely as a reference. 

 

A. Activities 

Activities were divided into two categories: simple and 

complex.  Simple activities consist of a single repeated 

action whereas complex activities are the compilation of a 

series of multiple actions.  Subjects performed simple 

activities in variable amounts and in various environments; 

the action, location, and length of performance was not 

controlled.  The simple activities consisted of: 

 Biking 

 Climbing 

 Driving 

 Lying 

Fig. 1. The application used for collecting activity data. 



 Phone Not on Person 

 Running 

 Sitting 

 Standing 

 Walking 

 

Every subject performed each complex activity four times 

in the same apartment.  The complex activities had defined 

starting and finishing points and lasted until the subject 

completed them.  The complex activities consisted of: 

 Cleaning: Each subject wiped down the kitchen 

counter and sink. 

 Cooking: Each subject simulated cooking by 

heating a bowl of water in the microwave and 

pouring a glass of water from a pitcher in the 

fridge. 

 Medication: Each subject retrieved pills from the 

cupboard and sorted out a week’s worth of 

doses. 

 Sweeping: Each subject swept the kitchen area. 

 Washing hands: Each subject washed their hands 

using the soap at the kitchen sink. 

 Watering Plants: Each subject filled a watering 

can and water three plants in two rooms. 

 

B. Feature Extraction 

Raw data is collected as a series of instances containing a 

timestamp, three values corresponding to acceleration along 

the x-axis, y-axis, and z-axis, and a second set of three 

orientation values representing azimuth, pitch, and roll.  

Rather than a set sampling rate, the accelerometer in an 

Android phone triggers an event whenever the 

accelerometer values change.  The rate of events can be set 

to one of four thresholds: fastest, game, normal, and UI, 

with fastest being the fastest sampling rate and UI being the 

slowest.  The phone used for this experiment was set to 

fastest.  The sampling rate varies because of this but can 

reach a maximum of 80 Hz.  The three axes of acceleration 

are dependent upon the orientation of the phone.  The x-axis 

runs parallel to the width of the phone, the y-axis runs the 

length of the phone, and the z-axis runs perpendicular to the 

face of the phone, as shown in Fig.  2. 

Raw data is processed to normalize the acceleration axes 

so that the x-axis, y-axis, and z-axis run north and south, 

east and west, and up and down respectively.  The 

orientation data is left as is. 

 Features (shown in Table I) are then extracted from a 

sliding window of varying lengths of time.  Performance 

was tested on window lengths of one, two, four, eight, 

twelve, and sixteen seconds.  Windows always overlapped 

by one half of the window length, e.g., a four second 

window slides over two seconds at a time.  Thus, each 

window is a single instance, but any given data point 

contributes to two instances.  This method has been shown 

to be effective in earlier work using accelerometer data [5, 

6]. 

 

C. Classification 

The WEKA machine learning toolkit [8] was used to test 

classifiers using the features extracted from the raw data set. 

Six different classifiers were tested: multi-layer perceptron, 

naïve Bayes, Bayes network, decision table, best-first tree, 

and K-star.  The accuracy of   the classifiers was tested 

using cross-validation with ten folds. WEKA was also used 

remove orientation features when testing classifiers using 

only acceleration values. 

 

IV.   RESULTS 

Classification was tested for the selected classifiers using 

six different window lengths: one, two, four, eight, twelve, 

and sixteen seconds as well as three activity sets: simple, 

complex, and combined.  Overall, accuracy for simple tasks 

was high across the board for both various classifiers (Fig. 

3) as well as across a range of window lengths (Fig. 4) with 

only the naïve Bayes classifier performing under 90% 

accuracy.   

This trend did not continue when complex activities were 

added to the set.  Shorter window frames performed 

significantly better than longer ones.  This result is 

surprising as a shorter window is less likely to account for 

more than a single one of the actions involved in a complex 

 

TABLE I 
Feature List 

Feature Accelerometer Orientation 

Mean X, Y, Z Azimuth, Pitch, Roll 

Min X, Y, Z Azimuth, Pitch, Roll 

Max X, Y, Z Azimuth, Pitch, Roll 

Standard Deviation X, Y, Z Azimuth, Pitch, Roll 

Zero-Cross X, Y, Z  

Correlation X/Y, X/Z, Y/Z  

 
Fig.  2.  Axes of Acceleration Relative to Phone 



activity.  The set of just complex activities barely achieved 

50% accuracy; blind guessing achieves 17% accuracy.  

Table II shows the confusion matrix for the combined 

activity set.  The matrix shows how heavily the 

misclassifications lean towards complex activities.  This is 

not surprising alone but does show the resilience of simple 

tasks against being misclassified when more activities are 

added.     

When looking only at complex activities in Table III, 

cooking, medication, and sweeping were all (correctly and 

incorrectly) classified far more often than cleaning, washing 

hands, or watering plants.  The former activities all involved 

little movement in the experiment whiles the latter (with the 

exception of washing hands) contained much more 

movement from one area to another. 

Overall, The K-Star classifier was the most accurate 

classifier performing best for all three activity sets.  The 

naïve Bayes classifier performed worst in all three cases. 

The complex activity set was also tested without using a 

sliding window for feature extraction.  Instead, an entire 

activity acted as a single instance.  This greatly improved 

performance from 52% to 78% accuracy.  It is worth noting 

that the amount of data used to train and test the classifier 

was drastically reduced when the data is treated this way to 

forty instances per activity.   

Unfortunately, there are several issues with performing 

recognition in this method.  This process was possible 

because the subjects input the start and stop times of the 

activities they performed.  A fully automated recognition 

system would need some way of determining the start and 

end of an activity rather than relying on the user.  

Additionally, unlike a sliding window which can do 

recognition in pseudo-real-time, this method requires an 

activity to be completed before it can be recognized.  The 

results do however; represent the potential for improving the 

recognition system. 

Fig.  5 shows the results of classifying each activity set 

with and without features extracted from orientation.  

Previous studies have generally relied solely on acceleration 

data and did not take the orientation of the sensors into 

account after beginning an activity.  In this case, orientation 

data represented an average of a 10-12% increase in 

accuracy over pure acceleration data.  Given the format of 

 

TABLE II 
Confusion Matrix for Combined Activity Set  

(Multi-layer Perceptron, 1-Second Window) 

 

    a    b    c    d    e    f    g    h    i    j    k    l    m    n    o      ← classified as 

 1056   52   29   13   20   20    9    5   21   34   66   26  169   33   50      a = Biking 

   28  694   18   18   12   33   21   33   31   11    7   12   28    8   13      b = Climbing 

    3   25 3228    2    3    5    1   42   11    0   12    1    2    1    5      c = Driving 

   27   34   10 1413    9    2    2    1    5    2    4   16    2    2    1      d = Lying 

    0    3    1    1 3360    0    1    1    0    0    0    0    1    0    0      e = Not on Person 

    1   16    3    4    1  780    0    1    1    4    6    3   16    7    5      f = Running 

   27   51   29    6    1    6 1107    5    7    8    1    4    4   10    2      g = Sitting 

    1    6    0    5    3    6    0  748    0    0    1    1    1    0    2      h = Standing 

    9   68   10    7    2    8   17    1 1472    8   13   14   40    2   23      i = Walking 

    0    0    1    0    0    1    0    0    8  190  243  108  209    2   11      j = Cleaning Kitchen 

    1    1    0    5    0    4    1    0    5  123  774  160  448   18  123      k = Cooking 

    0    5    0    1    0    3    0    1   19   77  125 1103  381   27   53      l = Medication 

    0    2    0    2    0    6    0    0   11  116  348  176 1257   21   68      m = Sweeping 

    0    1    1    0    1    2    0    0    4   42   96   62  149   56   38      n = Washing Hands 

    0    0    0    1    1    8    2    0    8   30  125   70  171   24  245      o = Watering Plants 

 
 

Fig.  3.  Accuracy of Various Classifiers 

Fig.  4.  Accuracy of Window Lengths 



this experiment it is likely that this is in part due to the fact 

that the starting position and orientation of the phone was 

not standardized.  Features extracted from orientation 

helped overcome this deficiency. 

 

V.   CONCLUSIONS 

Simple activities can be recognized with very high 

accuracy using only a single smartphone carried naturally.  

Performance was over 93% using a multi-layer perceptron 

network and a two second time window.  The length of the 

window had very little effect on results for simple activities 

which implies that it can be reduced for recognizing short 

activities or extended as needed.  Activity sets that included 

complex activities did not perform as well but still achieved 

over 50% accuracy. Simple activities retained their high 

classification accuracy even when paired with complex 

activities. 

The results for simple activities are on par with previous 

work on body sensors [4].  This shows a lot of promise for 

using mobile phones as an alternative to dedicated 

accelerometers.  The recognition of complex activities was 

also similar to that of the less recognizable activities in Ref.  

[3].  While 50% accuracy is not high enough for many real-

world uses of activity recognition, it does show that a phone 

could be effective as part of a data collection system for 

recognizing complex activities even if it cannot function as 

a standalone system. 

 

VI.   FUTURE WORK 

An area of further research is to determine the 

effectiveness of classification using a lower sampling rate 

with the goal of reducing the strain on the phones battery. 

Evaluation should also be performed on subjects who did 

not contribute the recognition model as well as determining 

the effectiveness of a model tuned to only a single subject.  

There remains plenty of work to do to improve the 

accuracy of activity recognition.  One approach that merits 

further research is the combination of a mobile phone with 

environmental sensors.  The combination of the two sensor 

types provides for detailed data on the subjects movement, 

location, and interactions.  Data from object sensors may be 

essential in categorizing complex activities such as washing 

hands or watering plants.  For example, watering plants 

could be seen as a combination of walking, standing, 

interacting with objects such as the sink and a watering can, 

and being in a particular area. 

Additionally, recognizing a complex activity as a series 

of simple activities holds promise.  Constructing a vector of 

a sequence of simple activities using the same machine 

learning techniques described in this paper and then using 

that vector to learn a complex activity may provide a higher 

accuracy of recognition than has previously been achieved. 
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